

		AC								
		Item No.								
	UNIVERSITY OF MUMBAI									
Sr. No.	Heading	Particulars								
1	Title of the Course	Final Year of B.E in Instrumentation Engineering								
2	Eligibility for Admission	After Passing Third Year Engineering as per the Ordinance 0.6242								
3	Passing Marks	40%								
4	Ordinances / Regulations (if any)	Ordinance 0.6242								
5	No. of Years / Semesters	4 Years / 8 Semesters								
6	Level	P.G./ U.G./ Diploma / Certificate (Strike out which is not applicable)								
7	Pattern	Yearly / Semester (Strike out which is not applicable)								
8	Status	New-/ Revised REV- 2019 'C' Scheme								
9	To be implemented from Academic Year	With effect from Academic Year: 2022-2023								

Date:

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology Technology University of Mumbai Dr. Anuradha Majumdar Dean Faculty of Science and University of Mumbai

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome-based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. Italsofocusesoncontinuousevaluationwhichwillenhancethequalityofeducation. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self-learning. Therefore, in the present curriculum skill-based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self-learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2020-21. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic years 2021-22, 2022-23, respectively.

Incorporation and implementation of Online Contents from <u>NPTEL/ Swayam Platform</u>

The curriculum revision is mainly focused on knowledge component, skill-based activities and project-based activities. Self-learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C' scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced to 171, to provide opportunity of self-learning to learner. Learners are now getting sufficient time for self-learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology Member, Academic Council, RRC in Engineering University of Mumbai

From Chairman's Desk

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and to achieve recognition of the institution or program meeting certain specified standards. The main-focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a student will have at the time of graduation from the program that is being accredited. Faculty of Science &Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome-based education in the process of curriculum development.

I, as a Chairman, Board of Studies in Instrumentation Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for undergraduate program in Instrumentation Engineering, more than ten senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs and POs of undergraduate program in Instrumentation Engineering are listed below;

Program Educational Objectives (PEOs)

- Graduates will have successful career in industry or pursue higher studies to meet future challenges of technological development.
- Graduates will develop analytical and logical skills that enable them to analyze and design Instrumentation and Control Systems.
- Graduates will achieve professional skills to expose themselves by giving an opportunity as an individual as well as team.
- *Graduates will undertake research activities in emerging multidisciplinary fields.*

Program Outcomes (POs)

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

University of Mumbai, Instrumentation Engineering, REV 2019 'C' Scheme

- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Dr. Alice N. Cheeran Chairman, Board of Studies in Instrumentation Engineering, Member - Academic Council, University of Mumbai

Dr. Mukesh D.Patil-Member BoS Dr.Sharad P.Jadhav-Member BoS Dr. Dipak D Gawali-Member BoS Dr.M. J Lengare-Member BoS Dr.Harish K. Pillai-Member BoS

				cheme Hours)	Credits Assigned					
Course Code	Course Name	Theory Tut.		Т	`heory	Pract.		Total		
ISC701	Instrumentation Project Documentation & Execution	3			3	3			3	
ISC702	Process Automation	3				3			3	
ISDOC701X	Department Optional Course-3	3				3	J		3	
IOC701X	Institute Optional Course-1	3				3			3	
ISL701	Instrumentation Project Documentation & Execution - Lab			2	5		1		1	
ISL702	Process Automation -Lab		\triangleleft	2		-	1		1	
ISL703X	Department Optional Course-3 -Lab			2			1		1	
ISP701	Major Project-I	6#				3		3		
	12 12			12 6			18			
				Theor	ry End	Exam.	Term Work	OR	Total	
Course Code	Course Name	Inter	mal As	ssessment	Sem Exam	Duration (in Hrs)				
		Test1	Test	2 Avg						
ISC701	Instrumentation Project Documentation & Execution	20	20	20	80	3			100	
ISC702	Process Automation	20	20	20	80	3			100	
ISDOC701X	Department Optional Course-3	20	20	20	80	3			100	
IOC701X	Institute Optional Course-1	20	20	20	80	3			100	
ISL701	Instrumentation Project Documentation & Execution - Lab						25	25	50	
ISL702	Process Automation-Lab						25	25	50	
ISL703X	Department Optional Course -3 – Lab						25	25	50	
ISP701	Major Project-I						50	50	100	
	Total			80	320		125	125	650	

Program Structure for Final Year B.E Instrumentation Engineering (With Effect from 2022-2023) Scheme for Semester -VII

Indicates the workload of Learner (Not Faculty), for Major Project

ISDOC 7011	Biomedical Instrumentation	
ISDOC 7012	Machine Learning	Lab work
ISDOC 7013	Advanced Control System	
ISDOC 7014	Advanced Microcontroller	

Institute Optional Course – 1 (Semester- VII)

IOC7011	Product Lifecycle Management	IOC7016	Cyber Security and Laws		
IOC7012	Reliability Engineering	IOC7017	Disaster Management and Mitigation Measur		
IOC7013	Management Information	IOC7018	Energy Audit and Management		
	System				
IOC7014	Design of Experiments	IOC7019	Development Engineering		
IOC7015	Operation Research				

Note: As per above Examination Scheme, the Minimum marks for passing are as follows -

Max. Marks	Min. marks
80	32
50	20
25	10
20	8

Subject code	Subject Name	Teac	ching scho	eme	Credit assigned			
ISC701	Instrumentation	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Project Documentation and Execution	3	-	-	3	-	-	3

Sub Code		Examination scheme							
		Theory (out of 100)					Pract.		
	Subject Name	Internal Assessment			End Term		and	Oral	Total
		Test1	Test2	Avg.	sem Exam	work	Oral	Orai	Total
ISC701	Instrumentation Project Documentation and Execution	20	20	20	80		-	-	100

Subject Code	Subject Name Credits						
ISC701	Instrumentation Project Documentation and Execution	3					
Course Objectives	 To provide knowledge of Instrumentation Project & Detailed Engineering techniques in the EPC Consultancy. To make the students capable of executing Project Deliverables and Engineering activities of Project Documentation. 						
Course Outcomes	 The students will be able to: Interpret types of projects and execute it by knowing the between customer, designer and constructor. Apply standards in instrumentation projects and prepare base documents. Design engineering documents such as loop diagram, hook-up Develop and test system integration. Schedule and evaluate activities like procurement, comm installation. Support and evaluate documentation software packages used 	ic engineering p, JB schedule. issioning, and					

Module	Contents	Hrs.	CO Mapping
1	 The Project and Project Team: Introduction, Types of projects, structure, Project scope, Project flow and deliverables, Need and techniques used for Project Planning and Scheduling The Project Team: Customer, designer and constructor; Responsibility matrix. 	05	CO1
2	 Project Documentation Standards: Introduction to ISA (ISA 5.1, 5.2, 5.4, ISA 20 etc), NEMA, ANSI standards. Project Engineering Documents: Preliminary Engineering Documents: PFD, P&ID (ISA S-5.1), Cause and effect diagram. Front End Engineering and Design (FEED) documents: Instrument index sheet, I/O schedule, Instrument specification sheets (ISA S-20) for pressure, temperature, flow and level instruments. 	10	CO2
3	Detailed Engineering Design: Instrument Loop wiring diagrams (ISA S-5.4), (ISA S-5.2), Instrument Hook up, BOM, Instrument Location Plan Cable Engineering: Class of conductors, Types, Specification, Selection, Cable schemes, Cable trays. Earthing and Grounding for General and power Signals. Power Distribution diagram, Earthing Diagram, Cable and Junction box schedule	07	CO3
4	 Construction activities: Site conditions and planning, Installation activities/ procedures and documents required. Types of operating Stations, Control system specifications, Control system graphics (ISA S5.5), databases, I/O allocation and configuration. System Integration: HMI specification Development, System Architecture Design: Network single line diagram generation. 	07	CO4
5	 Procurement activities: Pre-Qualification Evaluation of Vendor, Vendor registration, Tendering and bidding process and required documents, Bid evaluation, Purchase orders. Commissioning and Testing Activities: Panel testing Procedure and its documentation. Factory Acceptance Test (FAT), Customer Acceptance Test (CAT), Site inspection and testing (SAT), Calibration records, Test and inspection reports. Cold Commissioning and hot commissioning, punch list. 	06	CO5
6	Overview of project documentation tools: Introduction of various tools for project engineering documentation and project planning /scheduling.	04	CO6

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Andrew & Williams, "Applied instrumentation in process industries", Gulf Publishing.
- 2. Peter Watermeyer, *"Hand book for Process Plant Project Engineers"*, Professional Engineering Publishing, 2002.
- 3. John Bacon, "Management systems", (ISA)
- 4. B.G. Liptak, "Hand book-Process control Instrument Engineers".
- 5. Michael D. Whitt, "Successful Instrumentation & Control Systems Design", ISA
- 6. Pradeep Pai, "Project Management", Pearson Education.
- 7. <u>B.C. Punmia</u> and <u>K.K. Khandelwal</u>, "*Project Planning and Control with PERT and CPM*", Laxmi Publications Private Limited.

Reference Books:

- 1. Harold Kerzner, Van Nostrand, "Project Management A System Approach to Planning, Scheduling and Controlling", Reinhold Publishing, 2001.
- 2. ISA Manual, "Instrument Installation and Project Management", 2000.
- 3. ANSI-ISA, "Instrumentation Symbols and Identification", 1992.

Subject code	Subject Name	Tea	ching sch	eme	Credit assigned				
TOCEDO	Process	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ISC702	Automation	3	-	-	3		-	3	

Sub Code		Examination scheme									
	Subject Name		v	v (out of 80)							
		Internal Assessment			End	Term	Pract. and	Oral	Total		
		Test1	Test2	Avg.	sem Exam	work	Oral	orai	I otur		
ISC702	Process Automation	20	20	20	80		-	-	100		

Subject Code	Subject Name	credits							
ISC702	Process Automation	3							
Course objective	• To give the students fundamentals of automation and various								
	automation systems used in industry such as PLC, SCADA, and								
		To impart the knowledge about the architecture, working of PLC,							
	SCADA and DCS	SCADA and DCS							
	• To make the students capable to apply knowledge to identify	To make the students capable to apply knowledge to identify							
	hardware and software requirements of PLC, SCADA and DC	CS							
	• To give the students a comprehension of the aspects related to	Safety							
	Instrumented system (SIS).								
Course Outcome	The students will be able to-								
	1. Define automation, it's need, importance and applications in i	industry.							
	2. Identify components of PLC and develop PLC ladder and des	ign PLC							
	based application by proper selection and sizing criteria.								
	3. Describe SCADA architecture, communication in SCADA ar	nd							
	develop any application based on SCADA along with GUI us	sing							
	SCADA software.								
	4. Explain evolution and architecture of DCS, hierarchical contr	ol in							
	DCS, programming DCS through Function Block Diagram (F	FBD)							
	method.								
	5. Describe database and alarm management system								
	6. Identify the components of SIS, risk reduction methods, evalu	uation of							
	SIL (Safety Integrity Levels)								

Details of Syllabus:

Prerequisite: Knowledge of Digital Electronics, Process Instrumentation and Control.

Automation Fundamentals Automation, Need for automation and its importance, Types of automation, Automation, Need for automation and its importance, Types of automation, Automation systems architecture. 04 CO1 1 Process and factory automation.Automation applications, Industry 4.0 automation systems architecture. 04 CO1 Automation process and factory automation. System hierarchy, data quantity & quality and hierarchy – large control system hierarchy, data quantity & quality and hierarchy. Large control system hierarchy, data quantity & quality and hierarchy – large control system hierarchy, data quantity & quality and hierarchy – large control system filterent I/Omodules, communication modules, wiring diagrams of different I/Omodules, communication modules, Memory & addressing- memory organization,I/O addressing, hardware to software interface. 10 CO2 2 Software 10 CO2 introduction to PLCProgramming, programming devices, IEC standard PLC programminglanguages, LD programming basic LD instructions, PLC Timers andCounters: Types and examples, data transfer & program control instructions, advanced PLC instructions, PID Control using PLC. 10 CO3 3 SCADA introduction, brief history of SCADA, fements of SCADA, Features of SCADA incoduction, brief history of SCADA at DA, elements of SCADA at proceediment using SCAD A software. 07 CO3 3 SCADA as a real time system. Communications in SCADA- types & methods used, component using SCAD Asoftware. 10 CO4 4 interface w	Module	Content	Hrs.	CO Mapping
1 Process and factory automation.Automation applications, Industry 4.0 automation systems architecture. 04 C01 Automation hierarchy - large control system hierarchy, data quantity & quality and hierarchy-alge control system hierarchy, data quantity & quality and hierarchical control. 04 C01 Programmable Logic Controller Hardware 04 C01 Evolution of PLC, PLC Architecture, Types & Specifications. Safety PLC I/O modules, local and remote I/Oexpansion, special purpose modules, wiring diagrams of different I/Omodules, communication modules, Memory & addressing- memory organization, I/O addressing, hardware to software interface. 10 C02 2 Software 10 C02 PLC report and Data Sequence and transfer & program control instructions, advanced PLC instructions, PID Control using PLC. 10 C02 Case study: PLC selection and configuration for any one process applications. 07 C03 3 SCADA introduction, brief history of SCADA, elements of SCADA. Features of SCADA, Protocol structure, Specifications of SCADA. SCADA as real time system. Communications in SCADA - types & methods used, components, SCADA software. 10 C03 4 Instributed Control System (DCS) 10 C04 4 interface with DCS. Description of DCS, DCS flow sheet symbols, architecture of DCS, Specifications of DCS, Introduction of Hierarchical control of memory: Task li		Automation Fundamentals		
Programmable Logic Controller Hardware Frogrammable Logic Controller Hardware Evolution of PLC, PLC Architecture, Types & Specifications. Safety PLC I/O modules, local and remote I/Oexpansion, special purpose modules, wiring diagrams of different I/Omodules, communication modules, Memory & addressing - memory organization, I/O addressing, hardware to software interface. 10 CO2 2 Software introduction to PLCProgramming, programming devices, IEC standard, PLC programminglanguages, LD programming-basic LD instructions, PLC Timers andCounters: Types and examples, data transfer & program control instructions, advanced PLC instructions, PID Control using PLC. Case study: PLC selection and configuration for any one process applications. 3 SCADA introduction, brief history of SCADA, Features of SCADA, Protocol structure, Specifications of SCADA. Features of SCADA, Protocol structure, Specification Programming for GUI development using SCADA software. 07 CO3 Distributed Control System (DCS) Introduction to DCS. Evolution of DCS, Introduction of Hierarchical control or memory: Task listing, Higher and Lower computer level task. Supervisory computer tasks DCS configuration. Supervisory computer functions, Control techniques, Supervisory Control Algorithm. DCS DCS. System integration with PLCs computer: HMI, Man machine interface sequencing. Supervisory control, and integration with PLC, personal computers and direct I/O, serial linkages, network linkages, link between networks. Introduction to DCS Programming, Function Block Diagram method for DCS programming. 04 CO5 5 Database and Alarm Management MES, ERP Database manage	1	Process and factory automation.Automation applications, Industry 4.0 automation systems architecture. Automation hierarchy – large control system hierarchy, data quantity &	04	CO1
Hardware Evolution of PLC, PLC Architecture, Types & Specifications. Safety PLC, I/O modules, local and remote I/Oexpansion, special purpose modules, wiring diagrams of different I/Omodules, communication modules, Memory & addressing- memory organization,I/O addressing, hardware to software interface. 10 CO2 2 Software interface. 10 CO2 2 Software introduction to PLCProgramming, programming devices, HC standard PLC programminglanguages, LD programming basic LD instructions, PLC Timers andCounters: Types and examples, data transfer & program control instructions, advanced PLC instructions, PID Control using PLC. 10 CO2 2 Software of SCADA, Potocol structure, Specifications of SCADA. Features of SCADA, Protocol structure, Specifications of SCADA. Features of SCADA, Protocol structure, Specification SCADA - types & methods used, components, SCADA software. 07 CO3 3 SCADA areal time system Communications in SCADA - types & methods used, components, SCADA Software. 10 CO4 4 Distributed Control System (OCS) 10 CO4 4 Supervisory computer tasks DCS configuration. Supervisory computer functions, Supervisory computer displays, advanced control Strategies, computer interface sequencing, Supervisory control and Integration with PLC, personal computer sand direct I/O, serial linkages, network linkages, link between networks. Introduction to DCS Programming, Function Block Diagram method for DCS programming. 10 CO4 5 Database and Alarm M				*
Software introduction to PLCProgramming, programming basic LD instructions, PLC Timers andCounters: Types and examples, data transfer & program control instructions, advanced PLC instructions, PID Control using PLC. Case study: PLC selection and configuration for any one process applications. Supervisory Control and Data Acquisition (SCADA) SCADA introduction, brief history of SCADA, elements of SCADA. Features of SCADA, Protocol structure, Specifications of SCADA 07 CO3 methods used, components. SCADA as a real time system. Communications in SCADA- types & methods used, components. 07 SCADA bevelopment for any one typical application 07 Programming for GUI development using SCADA software. 07 Distributed Control System (DCS) Introduction of DCS. Evolution of DCS, DCS flow sheet symbols, architecture of DCS. Specifications of DCS. Introduction of Hierarchical control of memory: Task listing, Higher and Lower computer level task. Supervisory computer displays, advanced control Strategies, computer functions, Control techniques, Supervisory control Algorithm. DCS & Supervisory computer displays, advanced control Strategies, computer functions to DCS Programming, Function Block Diagram method for DCS programming. 10 CO4 DCS programming. 04 CO5 MES, Integration with PLCpersonal computers and direct I/O, serial linkages, network linkages, link between networks. 04 C05		Hardware Evolution of PLC, PLC Architecture, Types & Specifications. Safety PLC I/O modules, local and remote I/Oexpansion, special purpose modules, wiring diagrams of different I/Omodules, communication modules, Memory & addressing- memory organization, I/O addressing, hardware to	S	
PLC selection and configuration for any one process applications.Supervisory Control and Data Acquisition (SCADA) SCADA introduction, brief history of SCADA, elements of SCADA. Features of SCADA, Protocol structure, Specifications of SCADA3SCADA as a real time system. Communications in SCADA- types & methods used, components. SCADA Development for any one typical application Programming for GUI development using SCADA software.07CO34Distributed Control System (DCS) Introduction to DCS. Evolution of DCS, DCS flow sheet symbols, architecture of DCS. Specifications of DCS. Introduction of Hierarchical control of memory: Task listing, Higher and Lower computer level task. Supervisory computer tasks DCS configuration. Supervisory computer functions, Control techniques, Supervisory Control Algorithm. DCS & Supervisory computer displays, advanced control Strategies, computer interface with DCS. DCS. System integration with PLCs computer: HMI, Man machine interface sequencing, Supervisory control, and integration with PLC, personal computers and direct I/O, serial linkages, network linkages, link between networks. Introduction to DCS Programming, Function Block Diagram method for DCS programming.04CO55Database and Alarm Management MES, ERP Database management, Philosophies of Alarm Management, Alarm reporting, types of alarms generated and acceptance of alarms. MES, Integration with enterprise system.04CO5	2	introduction to PLCProgramming, programming devices, IEC standard PLC programminglanguages, LD programming- basic LD instructions, PLC Timers andCounters: Types and examples, data transfer & program	10	CO2
Supervisory Control and Data Acquisition (SCADA) SCADA introduction, brief history of SCADA, elements of SCADA. Features of SCADA, Protocol structure, Specifications of SCADA SCADA as a real time system. Communications in SCADA- types & methods used, components. 07 SCADA Development for any one typical application 07 Programming for GUI development using SCADA software. 07 Distributed Control System (DCS) Introduction to DCS. Evolution of DCS, DCS flow sheet symbols, architecture of DCS. Specifications of DCS. Introduction of Hierarchical control of memory: Task listing, Higher and Lower computer level task. Supervisory computer tasks DCS configuration. Supervisory computer functions, Control techniques, Supervisory control Algorithm. DCS & Supervisory computer displays, advanced control Strategies, computer interface sequencing, Supervisory control, and integration with PLC, personal computers and direct I/O, serial linkages, network linkages, link between networks. 10 C04 5 Database and Alarm Management MES, ERP Database management, Philosophies of Alarm Management, Alarm reporting, types of alarms generated and acceptance of alarms. MES, Integration with enterprise system. 04 C05				
SCADA introduction, brief history of SCADA, elements of SCADA. Features of SCADA, Protocol structure, Specifications of SCADA SCADA as a real time system, Communications in SCADA- types & methods used, components. SCADA Development for any one typical application Programming for GUI development using SCADA software.07CO3Distributed Control System (DCS) Introduction to DCS. Evolution of DCS, DCS flow sheet symbols, architecture of DCS. Specifications of DCS. Introduction of Hierarchical control of memory: Task listing, Higher and Lower computer level task. Supervisory computer tasks DCS configuration. Supervisory computer functions, Control techniques, Supervisory Control Algorithm. DCS & Supervisory computer displays, advanced control Strategies, computer interface with DCS. DCS. System integration with PLCs computer: HMI, Man machine interface sequencing, Supervisory control, and integration with PLC, personal computers and direct I/O, serial linkages, network linkages, link between networks. Introduction to DCS Programming, Function Block Diagram method for DCS programming.04C055Database and Alarm Management MES, ERP Database management, Philosophies of Alarm Management, Alarm reporting, types of alarms generated and acceptance of alarms. MES, Integration with enterprise system.04				
Introduction to DCS. Evolution of DCS, DCS flow sheet symbols, architecture of DCS. Specifications of DCS. Introduction of Hierarchical control of memory: Task listing, Higher and Lower computer level task. Supervisory computer tasks DCS configuration. Supervisory computer functions, Control techniques, Supervisory Control Algorithm. DCS & Supervisory computer displays, advanced control Strategies, computer interface with DCS. DCS. System integration with PLCs computer: HMI, Man machine interface sequencing, Supervisory control, and integration with PLC, personal computers and direct I/O, serial linkages, network linkages, link between networks. Introduction to DCS Programming, Function Block Diagram method for DCS programming.04CO55Database and Alarm Management MES, ERP Database management, Philosophies of Alarm Management, Alarm reporting, types of alarms generated and acceptance of alarms. MES, Integration with enterprise system.04CO5	3	SCADA introduction, brief history of SCADA, elements of SCADA. Features of SCADA, Protocol structure, Specifications of SCADA SCADA as a real time system, Communications in SCADA- types & methods used, components. SCADA Development for any one typical application	07	CO3
5 Database management, Philosophies of Alarm Management, Alarm reporting, types of alarms generated and acceptance of alarms. MES, Integration with enterprise system. 04 CO5 6 Safety Instrumented System (SIS) 04 CO6	4	 Distributed Control System (DCS) Introduction to DCS. Evolution of DCS, DCS flow sheet symbols, architecture of DCS. Specifications of DCS. Introduction of Hierarchical control of memory: Task listing, Higher and Lower computer level task. Supervisory computer tasks DCS configuration. Supervisory computer functions, Control techniques, Supervisory Control Algorithm. DCS & Supervisory computer displays, advanced control Strategies, computer interface with DCS. DCS. System integration with PLCs computer: HMI, Man machine interface sequencing, Supervisory control, and integration with PLC, personal computers and direct I/O, serial linkages, network linkages, link between networks. Introduction to DCS Programming, Function Block Diagram method for DCS programming. 	10	CO4
	5	Database management, Philosophies of Alarm Management, Alarm reporting, types of alarms generated and acceptance of alarms.	04	CO5
	6		04	CO6

University of Mumbai, Instrumentation Engineering, REV 2019 'C' Scheme

analysis. Process control systems and SIS.	
Safety Integrity Levels (SIL) and availability. Introduction to the	
international functional safety standard IEC61508	

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Samuel M. Herb, "Understanding Distributed Processor Systems for Control", ISA Publication.
- 2. Thomas Hughes, "Programmable Logic Controller", ISA Publication.
- 3. Stuart A. Boyer, "SCADA supervisory control and data acquisition", ISA Publication.
- 4. Gruhn and Cheddie, "Safety Shutdown Systems" ISA, 1998,

Reference Books:

- 1. Poppovik Bhatkar, "Distributed Computer Control for Industrial Automation", Dekkar Publication.
- 2. S.K. Singh, "Computer Aided Process Control", Prentice Hall of India.
- 3. Krishna Kant, "Computer Based Process Control", Prentice Hall of India
- 4. N.E. Battikha, "The Management of Control System: Justification and Technical Auditing", ISA.
- 5. Gary Dunning, "Introduction to Programmable Logic controller", Thomas Learning, edition, 2001.
- John. W. Webb, Ronald A Reis, "Programmable Logic Controllers Principles and Applications", 3rd edition, Prentice Hall Inc., New Jersey, 1995.
- 7. Bela G. Liptak "Instrument engineer's handbook- Process control" Chilton book company- 3rd edition.
- 8. D.J. Smith & K.G.L. Simpson, "Functional Safety: A Straightforward Guide to IEC61508 and Related Standards", -Butterworth-Heinemann Publications.

ISDOC7011Biomedical InstrumentationTheoryPract.Tut.TheoryPract.Tut.Total333-3	Subject code	Subject Name	Tea	ching sche	eme	Credit assigned				
Instrumentation 2	ISDOC7011	Biomedical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
		Instrumentation	3	-	-	3	-	-	3	

]	Examinati	ion scher	ne		
Sub Code	Subject Name	Г	heory (o	out of 1()0)		Pract.		
Sub Couc	Subject Rume	Internal Assessment			End	Term	and	Oral	Total
		Test1	Test2	Avg.	sem Exam	work	Oral		
ISDOC7011	Biomedical Instrumentation	20	20	20	80		-	-	100
						0			

Subject Code	Subject Name	Credits
ISDOC7011	Biomedical Instrumentation	3
Course Objectives	 To make students understand the Identification, classification, working principle of various Biomedical Instruments used potential measurement To make students understand the application of the various biostruments in diagnosis, therapeutic and imaging fields 	l for Bio-
Course Outcomes	 The students will be able to: Identify various Bio-potential with their specifications and pettheir measurements. Discuss various Physiological systems and to identify their parameters and related measurements. Explain the principle and working of various cardiovascular parameters and their measurement techniques with application Distinguish between the various medical imaging techniques on the principles and concepts involved in them. Relate between the different life support instruments and to describe their applications. Describe the significance of electrical safety in biomedical measurement. 	ns.

Details of Syllabus:

Prerequisite: Biology and human physiology.

Module	Contents	Hrs.	CO mapping
	Bio-Potentials and their Measurement:		
1	Structure of Cell, Origin of Bio-potential, electrical activity of cell and its characteristics and specifications. Measurement of RMP and AP. Electrode-Electrolyte interface and types of bio-potential electrodes.	5	C01
	Physiological Systems and Related Measurement:		
2	 Respiratory system- Physiology of respiration and measurements of respiratory related parameters. Nervous system- Nerve cell, neuronal communication, nerve-muscle physiology, CNS, PNS. Generation of EEG and study of its characteristics. Normal and abnormal EEG, evoked potential and epilepsy. Muscular system- Generation of EMG signal, specification and measurement. Cardiovascular system- Structure of Heart, Electrical and Mechanical activity of Heart, ECG measurements and Cardiac arrhythmias, Heart sound measurement. First aid to be given for heart attack patients. Design of ECG amplifier. 	10	CO2
	Cardiovascular Measurement:		
3	 Blood Pressure- Direct and Indirect types. Blood Flow- Electromagnetic and Ultrasonic types. Blood Volume- Types of Plethysmography. (Impedance) Cardiac Output- Ficks method, Dye-dilution and Thermo-dilution type 	7	CO3
	Imaging Techniques: *		
4	 X-Ray tube, X ray machine, Digital X Ray and its application. CT Scan- CT Number, Block Diagram, scanning system and application. Working principle of Ultrasound Imaging- Modes of scanning and their application. 	6	CO4
	Life support Instruments:		
5	 Pacemaker- Types of Pacemakers, mode of pacing and its application. Defibrillator- AC and DC Defibrillators and their application. Heart Lung machine and its application during surgery. Hemodialysis system and the precautions to be taken during dialysis. Ventilator system and its important parameters for monitoring 	9	CO5
	Significance of Electrical Safety:		
6	 Physiological effects of electrical current, Shock Hazards from electrical equipment and methods of accident prevention. 	2	CO6

* A Hospital Visit is recommended.

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1) Leslie Cromwell, —Biomedical Instrumentation and Measurements^{II}, 2nd Edition, Pearson Education, 1980.
- 2) John G. Webster, —Medical Instrumentation, John Wiley and Sons, 4th edition, 2010.
- 3) R. S. Khandpur, —Biomedical Instrumentation^{II}, TMH, 2004

Reference Books:

- 1) Richard Aston, Principles of Biomedical Instrumentation and Instruments, PH, 1991.
- 2) Joseph J. Carrand, John M. Brown, Introduction to Biomedical Equipment Technology, PHI/Pearson Education, 4th edition, 2001.
- 3) John E Hall, Gyton's- Medical Physiology, 12th edition,2011
- 4) L. E. Baker L. A. Geddes, -Principles of Applied Biomedical Instrumentation^{||}, John Wiley and Sons, 3rd Edition, 1991.

Subject Code	Subject Name	Teaching Scheme			Credit Assigned				
		Theory	Pract.	Tut.	Th	Pract.	Tut.	Total	
ISDOC7012	Machine Learning	3	-	-	3	-	-	3	

		Examination scheme								
Sub Code	Subject	,	Theory (o	ut of 10	0)		Pract.	1		
	Name	Intern	al Assess	ment	End	Term	and	Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
ISDOC7012	Machine Learning	20	20	20	80	2	-	-	100	

ISDOC7012	Machine Learning	3
Course Objectives	1. To familiarize the student with basic concepts of Machine l algorithms	earning
	2. To provide understanding of the concepts of regression and classification ML algorithms.	
	 To introduce the students to the basic concepts and applicat artificial neural networks 	ion of
Course Outcomes	Students will be able to:	
	 Apply the basic concepts of various machine learning algor Analyze the various supervised learning algorithms. Analyze the various unsupervised learning algorithms. Design machine learning algorithms based on artificial neur network. Explain the concept and working of support vector machine Apply machine learning algorithms for real time application 	ral

Details of Syllabus:

Module	Contents	Hrs.	CO Mapping
1.	Introduction to Machine Learning: Introduction of Artificial Intelligence, Machine Learning and Deep Learning, Types of Machine Learning, Supervised Learning, Unsupervised Learning, Reinforcement, Design a Learning System:	05	CO1

	training data, concept representation, function approximation Perspectives and Issues in Machine Learning.		
2.	Supervised Learning:Linear Regression (with one variable and multiple variables),Classification (Logistic Regression, Over fitting, Regularization).	07	CO2
3.	Unsupervised Learning: K-means and Hierarchical Clustering, Gaussian Mixture Models, Expectation Maximization (EM) algorithm, Model Selection, Dimensionality Reduction: Feature selection, Principal Component Analysis (PCA) and kernel PCA, Scaling.	08	CO3
4.	Artificial Neural Networks: The Neurons and the Brain, Neural Networks and Representation: Perceptron, Multilayer perceptron, Gradient Descent, nonlinear regression, back-propagation, Initialization, Training & Validation, decision trees for classification and regression, basic decision tree algorithm, issues in decision tree learning.	08	CO4
5.	Support Vector Machines: Functional and geometric margins, optimum margin classifier, constrained optimization, primal/dual problems, KKT conditions, dual of the optimum margin classifier, soft margins, kernels, quadratic programming, SMO algorithm.	06	CO5
6.	 Applying Machine Learning: Machine Learning System Design, Error Analysis, Error Metrics for Skewed Classes, Trading Off Precision and Recall. Machine Learning Applications: Spam detection, Anomaly Detection, Recommender Systems. 	05	CO6

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Mehryar Mohri, Afshin Rostamizadeh and Ameet Talwalkar, "Foundations of Machine Learning (FOML)", MIT Press, 2012
- 2. David Barber, "Bayesian Reasoning and Machine Learning", Cambridge University Press, 2007.
- 3. Tom Mitchell, "Machine Learning", McGraw Hill, 1988.

Reference Books:

- 1. Ian Good fellow, Yoshua Bengio and Aaron Courville, "Deep Learning (DL)", MIT Pess, 2016.
- 2. Shai Shalev-Shwartz and Shai Ben-David, "Understanding Machine Learning: From Theory to Algorithms (UML)", Cambridge University Press, 2014.

Subject code	Subject Name	Tea	aching sch	eme	Credit assigned				
ISDOCTA12	Advanced	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ISDOC7013	Control System	3	-	-	3	-	-	3	

Sub Code		Examination scheme								
	Subject Name	Theory (out of 100)					Pract.			
		Internal Assessment			End	Term	and	Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
ISDOC7013	Advanced Control System	20	20	20	80	\overline{C}	-	-	100	

Subject Code	Subject Name	Credits
ISDOC7013	Advanced Control System	3
Course Objectives	1. To familiarize the student with nonlinear phenomena.	
	2. To provide the students an understanding of stability and behavi	or of
	nonlinear systems near equilibrium points in phase plane.	
	3. To analyze stability of nonlinear systems using describing function	ion
	technique in complex-plane.	
	4. To introduce the model predictive control to the students.	
Course Outcomes	Students will be able to:	
	1. Distinguish between linear and nonlinear systems.	
	2. Compute or draw the state trajectory in phase-plane to analyze the	he behavior
	of nonlinear systems.	
	3. Linearize the nonlinear system and identify the nature of singula	r points.
	4. Construct the Lyapunov function to determine the stability of eq	uilibrium.
	5. Determine the stability of the system in frequency domain via do	escribing
	functions.	
	6. Design IMC-PID controller to system with uncertainties and dis	turbances.

Details of Syllabus:

Prerequisite: Knowledge of linear control theory.

Module	Contents	Hrs.	CO mapping
1	Nonlinear Control Systems Definition of nonlinear system, difference between linear and nonlinear systems, nonlinear models and nonlinear phenomena. Common physical nonlinearities - relay, saturation, dead-zone, friction, hysteresis, backlash and composite nonlinearities, jump resonance.	5	CO1
2	Phase Plane Analysis Basic concepts-phase trajectories, phase portrait. Qualitative behaviour of linear systems, multiple equilibria, qualitative behaviour near equilibrium points, limit cycles. Construction of phase trajectory by analytical method and graphically by delta method.	9	CO2
3	Linearization Jacobian Linearization, Concept of relative degree, zero dynamics of a nonlinear system. Input-output linearization using feedback for systems with no zero dynamics.	5	CO3
4	Lyapunov Stability Analysis Stability of equilibria, Asymptotic stability, Lyapunov stability theorems, Stability analysis of linear systems, Construction of Lyapunov functions using Krasovskii method and variable gradient method.	8	CO4
5	Describing Function Analysis Fundamentals of describing function. Describing Functions of saturation, dead-zone, relay and their combinations. Stability analysis of nonlinear systems via describing function method.	8	CO5
6	Internal Model Control Introduction to Model-Based Control, Open loop controller Design, Model Uncertainty and Disturbances, Development of IMC structure, IMC-Based PID Controller Design	4	CO6

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. I. J. Nagrath and M. Gopal, Control System Engineering, 3rd Edition, New Age International (P) Ltd., Publishers 2000.
- 2. Hassan Khalil, Nonlinear Systems, 3rd edition, paperback edition, 2014.
- 3. B. WayneBequette, Process Control: Modeling, Design, and Simulation, Prentice Hall PTR, 2002.
- 4. K. Ogata, Modern Control Engineering, Prentice Hall of India, 4th edition, 2002.

Reference Books:

- 1. Pierre R. Belanger, "Control Engineering", Saunders college Publishing.
- 2. Alberto Isidori, Nonlinear Control Systems, CSE book series, Springer-Verlag London 1995.
- 3. Dr. K.P. Mohandas, "Modern Control Engineering", revised edition, Sanguine Publishers, Bangalore, 2006.
- 4. Gene F. Franklin, J David Powell, Abbas Emami-Naeini, "Feedback Control of Dynamic Systems", 5th edition Pearson Educations.
- 5. Shankar Sastry, Marc Bodson, "Adaptive Control", Prentice Hall of India (P) Ltd., 1993.
- 6. John Doyle, Bruce Francis, Allen Tannenbaum, "Feedback Control Theory".
- 7. Pierre R. Belanger, "Control Engineering", Saunders college Publishing
- 8. Norman Nise, "Control System Engineering", 4th edition Wiley International Edition.

Subject code	Subject Name	Teaching scheme						
ISDOC7014	Advanced Microcontroller	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		3	-	-	3	-		3
								•

Sub Code	Subject Name	Examination scheme								
			Theory (o			Term	Pract.			
		Intern Test1	al Assess Test2	Avg.	End sem	work	and Oral	Oral	Total	
				8	Exam					
ISDOC7014	Advanced Microcontroller	20	20	20	80		-	-	100	

Subject Code	Subject Name	Credits
ISDOC7014	Advanced Microcontroller	3
Course Objectives	 To introduce the outline architecture of ARM microcontroller i basics of pipelines, registers, exception modes, etc. Develop program ARM Cortex M3 using the various instr different applications and understand the basic hardware composed. Understand and design real time operating systems which are basic embedded industry. To introduce the setup and operate the Raspberry Pi. 	uctions for onents.
Course Outcomes	 Students will be able to: Describe ARM microcontroller Architecture and Operation. Discuss the overview of Cortex-M3 processor. Develop application using Cortex-M3 processor. Explain the memory protection units and the other features of Processor. Describe the principle of working of RTOS and related tasks. Build efficient embedded system using Raspberry Pi. 	Cortex-M3

Details of Syllabus:

Prerequisite: Knowledge of High-level language programming.

Module	Contents	Hrs.	CO mapping
1	ARM Architecture : Background of ARM Architecture, Architecture Versions, Processor Naming, Instruction Set Development, Thumb-2 and Instruction Set Architecture.	6	CO1
2	Overview of Cortex-M3: Cortex-M3 Basics: Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence. Instruction Sets: Assembly Basics, Instruction List, Instruction Descriptions.	10	CO2
3	Cortex-M3 Implementation Overview Pipeline, Block Diagram, Bus Interfaces on Cortex-M3, I-Code Bus, D-Code Bus, System Bus, External PPB and DAP Bus, Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behaviour, Fault Exceptions and Interrupt Latency.	8	CO3
4	Memory Protection Unit and other Cortex-M3 features MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication.	5	CO4
5	Introduction to Real Time Operating System: Tasks and task states, task and data, Semaphores and shared data. Multitasking operating systems, Context switching, task tables, and kernels, Task swapping methods (Time slice, Pre-emption, Co-operative multitasking). Scheduler algorithms (Rate monotonic, Deadline monotonic scheduling) Priority inversion, Tasks, threads and processes, Exceptions, Example of any tiny RTOS.	6	CO5
6	Introduction to Raspberry Pi : Raspberry Pi Hardware, Raspberry Pi Accessories Raspberry Pi Software, communicating with the Raspberry Pi, Configuring the Raspberry Pi.	4	CO6

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 or 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. The Definitive Guide to the ARM Cortex-M3, Joseph Yiu, Second Edition, Elsevier Inc. 2010.
- 2. Embedded/Real Time Systems Concepts, Design and Programming Black Book, Prasad, KVK.

3. David Seal "ARM Architecture Reference Manual", 2001 Addison Wesley, England; Morgan Kaufmann Publishers

4. Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide – Designing and Optimizing System Software", 2006, Elsevier.

Reference Books:

- 1. Steve Furber, "ARM System-on-Chip Architecture", 2nd Edition, Pearson Education.
- 2. Cortex-M series-ARM Reference Manual.
- 3. Cortex-M3 Technical Reference Manual (TRM)

4. Arnold. S. Berger, "Embedded Systems Design - An introduction to Processes, Tools and Techniques", Easwer Press.

5. Raj Kamal, "Microcontroller - Architecture Programming Interfacing and System Design" 1st Edition, Pearson Education.

6. Derek Molloy, "Exploring Raspberry Pi, Interfacing to the Real World with Embedded Linux", 2016.

7. Simon Monk, "Programming the Raspberry Pi, Getting Started with Python", McGraw Hill, 2006.

In addition, manufacturers Device data sheets and application notes are to be referred to get practical and application-oriented information.

Subject code	Subject Name	Teaching scheme			Credit assigned			
	Product Lifeevelo	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
IOC7011	Lifecycle Management (abbreviated as PLM)	3	-	-	3	-	5	3

	Subject Name	Examination scheme								
		Т	heory (out of 1	00)		Pract.			
Sub Code		Intern	al Asses	sment	End	Term		Oral	Total	
		Test1	Test2	Avg.	sem Exam	work				
IOC7011	Product Lifecycle Management	20	20	20	80		I	-	100	

Course Objectives	 To familiarize the students with the need, benefits and components of PLM To acquaint students with Product Data Management & PLM strategies To give insights into new product development program and guidelines for designing and developing a product To familiarize the students with Virtual Product Development
	Student will be able to 1. Gain knowledge about phases of PLM, PLM strategies and
	methodology for PLM feasibility study and PDM implementation.
Course	2. Illustrate various approaches and techniques for designing and developing products.
Course Outcomes	3. Apply product engineering guidelines / thumb rules in designing products
Outcomes	for moulding, machining, sheet metal working etc.
	4. Acquire knowledge in applying virtual product development tools for
	components, machining and manufacturing plan

Module	Contents	Hours
1	Introduction to Product Lifecycle Management (PLM): Product Lifecycle	12
	Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of	
	Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of	
	PLM, Widespread Impact of PLM, Focus and Application, A PLM Project,	
	Starting the PLM Initiative, PLM Applications	
	PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy,	

2	Product Design: Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of	09
	Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process	
3	Product Data Management (PDM): Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation	06
4	Virtual Product Development Tools: For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies	06
5	Integration of Environmental Aspects in Product Design: Sustainable Development, Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies into the Design Process, Life Cycle Environmental Strategies and Considerations for Product Design	06
6	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach, General Framework for LCCA, Evolution of Models for Product Life Cycle Cost Analysis	06

Books Recommended:

Reference Books:

- 1. John Stark, —Product Lifecycle Management: Paradigm for 21st Century Product Realisation, Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, —Product Design for the environment-A life cycle approachl, Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, Immonen Anselmie, —Product Life Cycle Managementl, Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, —Product Lifecycle Management: Driving the next generation of lean thinking^{||}, Tata McGraw Hill, 2006, ISBN: 0070636265

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Teaching scheme				Credit a	ssigned	
	Reliability	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
IOC7012	Engineering (abbreviated as RE)	3	-	-	3	-		3
<u> </u>								

		Examination scheme								
Sub Code	Subject Name	Г	Theory (out of 100)				Pract.			
		Internal Assessment			End	Term	and	Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
IOC7012	Reliability Engineering	20	20	20	80		1	-	100	

Course Objectives	 To familiarize the students with various aspects of probability theory To acquaint the students with reliability and its concepts To introduce the students to methods of estimating the system reliability of simple and complex systems To understand the various aspects of Maintainability, Availability and FMEA procedure
Course Outcomes	 Student will be able to Understand and apply the concept of Probability to engineering problems Apply various reliability concepts to calculate different reliability parameters Estimate the system reliability of simple and complex systems Carry out a Failure Mode Effect and Criticality Analysis

Module	Contents	Hours
1	 Probability theory: Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem. Probability Distributions: Central tendency and Dispersion; Binomial, 	10
	Normal, Poisson, Weibull, Exponential, relations between them and their significance.	
2	Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve.	10
	Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions.	
	Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time	

3	System Reliability	05
	System Configurations: Series, parallel, mixed configuration, k out of n	
4	Reliability ImprovementRedundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies. Markov analysis. System Reliability Analysis – Enumeration method, Cut-set method, Success Path method, Decomposition method.	10
5	Maintainability and AvailabilitySystem downtime, Design for Maintainability: Maintenance requirements, Designmethods:Fault Isolation and self-diagnostics, Parts standardization andInterchangeability, Modularization and Accessibility, Repair Vs Replacement.	
6	Failure Mode, Effects and Criticality Analysis:Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fault tree analysis and Event tree Analysis	

Books Recommended:

Reference Books:

- 1. L.S. Srinath, —Reliability Engineering, Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, —Reliability and Maintainability Engineering, Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, —Engineering Reliability, John Wiley & Sons, 1980.
- 4. P.D.T. Conor, —Practical Reliability Engg.I, John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, -Reliability in Engineering Designl, John Wiley & Sons.
- 6. Murray R. Spiegel, —Probability and Statistics, Tata McGraw-Hill Publishing Co. Ltd.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Teaching scheme			Credit assigned			
	Management Information	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
IOC7013	System (abbreviated as MIS)	3	-	-	3	-	2	3

		Examination scheme								
	Subject Name	Theory (out of 100)					Pract.			
Sub Code		Internal Assessment			End	Term	and	Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
IOC7013	Management Information System	20	20	20	80		-	-	100	

	• The course is blend of Management and Technical field.
	• Discuss the roles played by information technology in today's business and define
	various technology architectures on which information systems are built
G	• Define and analyze typical functional information systems and identify how they
Course	meet the needs of the firm to deliver efficiency and competitive advantage
Objectives	• Identify the basic steps in systems development
	• Define and analyze various MIS management responsibilities, including planning,
	budgeting, project management, and personnel management
	 Discuss critical ethical and social issues in information systems
	Student will be able to
	1. Explain how information systems Transform Business
	 Identify the impact information systems have on an organization
Course	 Describe IT infrastructure and its components and its current trends
Outcomes	4. Understand the principal tools and technologies for accessing information from
	databases to improve business performance and decision making
	5. Identify the types of systems used for enterprise-wide knowledge
	management and how they provide value for businesses

Module	Contents	Hours
1	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Importance of IS to Society. Organizational Strategy, Competitive Advantages and IS.	7
2	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management. Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	9
3	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	6
4	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E- commerce – B2B B2C. Mobile commerce.	7
5	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model.	6
6	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process. Acquiring Information Systems and Applications: Various System development life cycle models.	10

Books Recommended: Reference Books:

- 1. Management Information Systems: Kelly Rainer, Brad Prince by Wiley
- 2. Management Information Systems: Managing the Digital Firm .(10th Edition). K.C. Laudon and J.P. Laudon, Prentice Hall, 2007.
- 3. Managing Information Systems: Strategy and Organization, D. Boddy, A. Boonstra, Prentice Hall, 2008

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Teaching scheme			Credit assigned			
	Design of	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
IOC7014	Experiments (abbreviated as DoE)	3	-	-	3	-	-	3
								•

Sub Code			Examination scheme								
	Subject Name	Г	Theory (out of 100)				Pract.				
		Internal Assessment			End	Term	and	Oral	Total		
		Test1	Test2	Avg.	sem Exam	work	Oral				
IOC7014	Design of Experiments	20	20	20	80		-	-	100		
		•	•								

C	1. To understand the issues and principles of Design of Experiments (DOE).
Course	2. To list the guidelines for designing experiments.
Objectives	3. To become familiar with methodologies that can be used in conjunction with
	experimental designs for robustness and optimization
	Student will be able to
Course	1. Plan data collection, to turn data into information and to make decisions that lead
Outcomes	to appropriate action.
Outcomes	2. Apply the methods taught to real life situations.
	3. Plan, analyze, and interpret the results of experiments

Module	Contents	Hours
1	Introduction: Strategy of Experimentation, Typical Applications of Experimental Design, Guidelines for Designing Experiments, Response Surface Methodology.	6
2	Fitting Regression Models: Linear Regression Models, Estimation of the Parameters in Linear Regression Models, Hypothesis Testing in Multiple Regression, Confidence Intervals in Multiple Regression, Prediction of new response observation, Regression model diagnostics, Testing for lack of fit.	8
3	Two-Level Factorial Designs: The 2^2 Design, The 2^3 Design, The General 2^k Design, A Single Replicate of the 2^k Design, The Addition of Center Points to the 2^k Design, Blocking in the 2^k Factorial Design, Split- Plot Designs.	7
4	Two-Level Fractional Factorial Designs: The One-Half Fraction of the 2^k Design, The One-Quarter Fraction of the 2^k Design, The General 2^{k-p} Fractional Factorial Design, Resolution III Designs, Resolution IV and V Designs, Fractional Factorial Split-Plot Designs.	7
5	Conducting Tests: Testing Logistics, Statistical aspects of conducting tests, Characteristics of good and bad data sets, Example experiments, Attribute Vs	7

	Variable data sets.	
6	Taguchi Approach: Crossed Array Designs and Signal-to-Noise Ratios,Analysis Methods, Robust design examples.	4

Books Recommended:

Reference Books:

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss
- 6. Philip J Ross, —Taguchi Technique for Quality Engineering, McGraw Hill.
- 7. Madhav S Phadake, —Quality Engineering using Robust Design, Prentice Hall.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Teaching scheme			Credit assigned			
IOC7015	Operation Research (abbreviated as OR)	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
100/015	(abbi eviateu as OK)	3	-	-	3	-	-	3

	Subject Name	Examination scheme									
		Theory (out of 100)					Pract.				
Sub Code		Internal Assessment			End	Term	and	Oral	Total		
		Test1	Test2	Avg.	sem Exam	work	Oral				
IOC7015	Operation Research	20	20	20	80	(-)	-	-	100		
	-		<u>.</u>		C						

Course	• Formulate a real-world problem as a mathematical programming model.
Objectives	• Understand the mathematical tools that are needed to solve optimization
-	problems.
	• Use mathematical software to solve the proposed models.
	Student will be able to
Course Outcomes	 Understand the theoretical workings of the simplex method for linear programming and perform iterations of it by hand. Understand the relationship between a linear program and its dual, including strong duality and complementary slackness. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures
L	

Module	Contents	Hours
	Introduction to Operations Research: Introduction, Historical Background,	2
	Scope of Operations Research , Features of Operations Research, Phases of	
1	Operations Research, Types of Operations Research Models, Operations Research	
	Methodology, Operations Research Techniques and Tools, Structure of the	
	Mathematical Model, Limitations of Operations Research	

	Linear Programming: Introduction, Linear Programming Problem,	6
	Requirements of LPP, Mathematical Formulation of LPP, Graphical method,	
2	Simplex Method Penalty Cost Method or Big M-method, Two Phase Method,	
	Revised simplex method, <i>Duality</i> , Primal – Dual construction, Symmetric and	
	Asymmetric Dual, Weak Duality Theorem, Complimentary Slackness Theorem,	
	Main Duality Theorem, Dual Simplex Method, Sensitivity Analysis	
	Transportation Problem: Formulation, solution, unbalanced	6
	Transportation problem. Finding basic feasible solutions - Northwest corner	
	rule, least cost method and Vogel's approximation method. Optimality test: the	
3	stepping stone method and MODI method. Assignment Problem: Introduction, Mathematical Formulation of the Problem,	
	Hungarian Method Algorithm, Processing of n Jobs Through Two Machines and	
	m Machines, Graphical Method of Two Jobs m Machines Problem Routing	
	Problem, Travelling Salesman Problem	
4	Integer Programming Problem: Introduction, Types of Integer Programming	6
4	Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique.	
	Introduction to Decomposition algorithms.	
5	Queuing models: queuing systems and structures, single server and multi-server	6
5	models, Poisson input, exponential service, constant rate service, finite and infinite population	
	Simulation: Introduction, Methodology of Simulation, Basic Concepts,	4
6	Simulation. Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation <i>Monte-Carlo Method</i> :	-
0	Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages	
	of Simulation, Limitations of Simulation	
	Dynamic programming. Characteristics of dynamic programming. Dynamic	4
7	programming approach for Priority Management employment smoothening,	
	capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability	
	Games Theory. Competitive games, rectangular game, saddle point, minimax	4
8	(maximin) method of optimal strategies, value of the game. Solution of games	
	with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	
	Inventory Models: Classical EOQ Models, EOQ Model with Price Breaks,	4
9	EOQ with Shortage, Probabilistic EOQ Model,	т

Books Recommended:

Reference Books:

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Teaching scheme			Credit assigned			
IOC7016	Cyber Security and Laws (abbreviated as CSL)	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		3	-	-	3	-	-	3

	Subject Name	Examination scheme								
		Т	Theory (out of 1	00)		Pract.			
Sub Code		Internal Assessment			End	Term	and	Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
IOC7016	Cyber Security and Laws	20	20	20	80	1	-	-	100	

Course	• To understand and identify different types cyber crime and cyber law						
Course	 To recognized Indian IT Act 2008 and its latest amendments 						
Objectives	• To learn various types of security standards compliances						
	Student will be able to						
	1. Understand the concept of cyber crime and its effect on outside world						
	2. Interpret and apply IT law in various legal issues						
Course	3. Distinguish different aspects of cyber law						
Outcomes	4. Apply Information Security Standards compliance during software design						
	and development						

Module	Contents	Hours
1	Introduction to Cybercrime: Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	4
2	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyber stalking, Cybercafé and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices- Related Security Issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops	10
3	Tools and Methods Used in Cyberline: Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	6

4	The Concept of Cyberspace: E-Commerce , The Contract Aspects in Cyber	8
	Law, The Security Aspect of Cyber Law, The Intellectual Property Aspect in	
	Cyber Law, The Evidence Aspect in Cyber Law, The Criminal Aspect in	
	Cyber Law, Global Trends in Cyber Law, Legal Framework for Electronic	
	Data Interchange Law Relating to Electronic Banking, The Need for an Indian	
5	Indian IT Act.: Cyber Crime and Criminal Justice : Penalties, Adjudication	8
	and Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	
6	Information Security Standard compliances	6
	SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	

Books Recommended:

Reference Books:

- 1. Nina Godbole, Sunit Belapure, *Cyber Security*, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security & Global Information Assurance Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Tea	ching sch	eme	Credit assigned				
	Disaster Management and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
IOC7017	Management and Mitigation Measures (abbreviated as DMMM)	3	-	-	3	-	2	3	

							C			
		Examination scheme								
	Subject Name	Т	Theory (out of 1	00)		Pract.			
Sub Code		Internal Assessment			End	Term	and	Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
IOC7017	Disaster Management and Mitigation Measures	20	20	20	80	-	-	-	100	
					X					

	 To understand the various types of disaster occurring around the world
	• To identify extent and damaging capacity of a disaster
	• To study and understand the means of losses and methods to overcome
	/minimize it.
Course	• To understand role of individual and various organization during and after
Objectives	disaster
Objectives	• To know warning systems, their implementation and based on this to initiate
	training to a laymen
	• To understand application of GIS in the field of disaster management
	• To understand the emergency government response structures before, during
	and after disaster
	Student will be able to
	1. Understand natural as well as manmade disaster and their extent and possible
	effects on the economy.
Course	2. Planning of national importance structures based upon the previous history.
Outcomes	3. Understand government policies, acts and various organizational
Outcomes	structure associated with an emergency.
	4. Know the simple do's and don'ts in such extreme events and act
	accordingly

Module	e Contents							
1	Introduction: Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change.							

r		
2	Natural Disaster and Manmade disasters: Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion . Manmade Disasters:	06
3	Disaster Management, Policy and Administration: Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. Policy and administration: Importance and principles of disaster management policies, command and co- ordination of in Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters. disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	06
4	Institutional Framework for Disaster Management in India: Importance of public awareness, Preparation and execution of emergency management programme. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	06
5	Financing Relief Measures: Ways to raise finance for relief expenditure, Role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. International relief aid agencies and their role in extreme events.	09
6	Preventive and Mitigation Measures: Pre-disaster, during disaster and post- disaster measures in some events in general, Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication. Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. Do's and don'ts in case of disasters and effective implementation of relief aids.	06

Books Recommended:

Reference Books:

- 1. Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS –C.P. Lo Albert, K.W. Yonng Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Teaching scheme			Credit assigned			
	Energy Audit and Management	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
IOC7018	Management (abbreviated as EAM)	3	-	-	3	-	-	3

		Examination scheme								
	Subject Name	T	Theory (out of 1	00)		Pract.			
Sub Code		Internal Assessment			End	Term		Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
IOC7018	Energy Audit and Management	20	20	20	80		-	-	100	

	• To understand the importance of energy security for sustainable							
	development and the fundamentals of energy conservation.							
Course	• To introduce performance evaluation criteria of various electrical and thermal							
Objectives	installations to facilitate the energy management							
	• To relate the data collected during performance evaluation of systems for							
	identification of energy saving opportunities							
	Student will be able to							
	1. To identify and describe present state of energy security and its importance.							
	2. To identify and describe the basic principles and methodologies adopted in							
Course	energy audit of an utility.							
Outcomes	3. To describe the energy performance evaluation of some common electrical							
	installations and identify the energy saving opportunities.							
	4. To describe the energy performance evaluation of some common thermal							
	installations and identify the energy saving opportunities							
	5. To analyze the data collected during performance evaluation and							
	recommend energy saving measures							
	recommend energy saving measures							

Module	Contents	Hours
1	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	4
2	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data	8

	and information- analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	
3	 Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipment's and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers. Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives. 	10
4	 Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities 	10
5	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	4
6	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non- Conventional and Renewable Energy Sources	3

Books Recommended: Reference Books:

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Teaching scheme			Credit assigned				
1007010	Development	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
IOC7019	Engineering (abbreviated as DE)	3	-	-	3	-	-	3	

	Subject Name	Examination scheme								
		Theory (out of 100)					Pract.			
Sub Code		Internal Assessment			End	Term	and	Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
IOC7019	Development Engineering	20	20	20	80		-	-	100	
						7,				

	• To understand the characteristics of rural Society and the Scope, Nature and Constraints of rural						
G	 To study Implications of 73rd CAA on Planning, Development and Governance of Rural Areas 						
Course	• An exploration of human values, which go into making a _good' human being, a						
Objectives	_good' professional, a _good' society and a _good life' in the context of work						
	life and the personal life of modern Indian professionals						
	• To understand the Nature and Type of Human Values relevant to Planning						
	Institutions						
	Student will be able to						
	1. Apply knowledge for Rural Development						
	2. Apply knowledge for Management Issues.						
~	3. Apply knowledge for Initiatives and Strategies.						
Course	4. Develop acumen for higher education and research.						
Outcomes	5. Master the art of working in group of different nature.						
	6. Develop confidence to take up rural project activities independently.						

Module	Contents	Hours
1	Introduction to Rural Development Meaning, nature and scope of development; Nature of rural society in India; Hierarchy of settlements; Social, economic and ecological constraints for rural development. Roots of Rural Development in India Rural reconstruction and Sarvodaya programme before independence; Impact of voluntary effort and Sarvodaya Movement on rural development; Constitutional direction, directive principles; Panchayati Raj - beginning of planning and community development; National extension services.	08
2	Post-Independence rural Development Balwant Rai Mehta Committee - three tier system of rural local. Government; Need and scope for people's participation and Panchayati Raj; Ashok Mehta Committee - linkage between Panchayati Raj,	04

	participation and rural development.	
3	Rural Development Initiatives in Five Year Plans Five Year Plans and Rural Development; Planning process at National, State, Regional and District levels; Planning, development, implementing and monitoring organizations and agencies; Urban and rural interface - integrated approach and local plans; Development initiatives and their convergence; Special component plan and sub- plan for the weaker section; Micro-eco zones; Data base for local planning; Need for decentralized planning; Sustainable rural development.	06
4	Post 73rd Amendment Scenario 73rd Constitution Amendment Act, including - XI schedule, devolution of powers, functions and finance; Panchayati Raj institutions - organizational linkages; Recent changes in rural local planning; Gram Sabha - revitalized Panchayati Raj; Institutionalization; resource mapping, resource mobilization including social mobilization; Information Technology and rural planning; Need for further amendments,	04
5	Values and Science and Technology Material development and its values; the challenge of science and technology; Values in planning profession, research and education. Types of Values Psychological values — integrated personality; mental health; Societal values — the modern search for a good society; justice, democracy, rule of law, values in the Indian constitution; Aesthetic values — perception and enjoyment of beauty; Moral and ethical values; nature of moral judgment; Spiritual values; different concepts; secular spirituality; Relative and absolute values; Human values— humanism and human values; human rights; human values as freedom, creativity, love and wisdom.	10
6	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility; Work ethics; Professional ethics; Ethics in planning profession, research and education	04

Books Recommended:

Reference Books:

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission
- 5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi
- 6. Planning Guide to Beginners
- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.
- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.
- 10. Watson, V., Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and Practice, Vol. 4, No.4, pp.395 407

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Teaching scheme			Credit assigned				
	Instrumentation Project	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ISL701	Documentation & Execution Lab		2			1		1	

		Examination scheme								
		Г	heory (o	ut of 10	0)		Pract.			
Subject Code	Subject Name	Internal Assessment			End sem Exam	Term work	and Oral	Oral	Total	
		Test1	Test2	Avg.						
ISL701	Instrumentation Project Documentation & Execution Lab					25	-	25	50	
				0						

Subject Code	Subject Name	Credits
ISL701	Instrumentation Project Documentation and Execution Lab	1
Course Objectives	 To provide knowledge of types and execution of I&C type project This Course aims to explain Project deliverables and engineering activities o documentation. To get acquainted with commercial software used for documentation. 	f project
Course Outcomes	 The students will able to- Apply standards used in instrumentation project for preparation of deliverabl Interpret, design and construct documents such as PFD, P&ID, Index sheet. Apply ISA specification data sheet / loop standard, to prepare Inst specification sheet and construct loop wiring diagram. Interpret, design and construct Hook-up diagram, and develop skill to different project schedule. Select and apply procurement, installation procedure and pre-commission commissioning activities with Inspection. Select and support documentation software packages used in industry. 	rument prepare

Syllabus: Same as that of Subject ISC701 Instrumentation Project Documentation and Execution.

List of Experiments

Sr	Experiments	CO
No	-	Mapping
1	# To study and draw Instrumentation symbols: ISA symbols	CO1
2	# To study and prepare Process Flow Diagram.	CO2
3	# To develop P&ID diagram.	CO2
4	To prepare instrument index sheet for tags used in P&ID.	CO2
5	# To prepare loop wiring diagram of any electronic/ pneumatic loop.	CO3
6	Study and prepare specification sheets for sample instruments.	CO3
7	# To prepare Installation details (Hook-up diagram) for DPT/ Thermowell	CO4
8	To Study and preparation of Cable schedule	CO4
9	To Learn procedure to perform pre-commissioning activities	CO5
10	To study various software packages used for project documentation.	CO6
11	To prepare documents for Procurement activities: Inquiry, Quotation, Comparative statement, Purchase orders	CO5

Students should prepare it on A3/A1 size drawing paper

Any other experiments/assignments based on syllabus which will help students to understand topic/concept.

Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 8 experiments and 3 assignments.

The distribution of marks for term work shall be as follows: Laboratory work (Experiments/Assignments): 10 Marks Laboratory work (programs / journal) : 10 Marks

Laboratory work (programs / journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensure the satisfactory performance of Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISL702	Process Automation -	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
151/02	Lab	-	02	-	-	1	-	1

		Examination scheme								
Sub Code	Subject Name	Inter	nal Asses	ssment	End sem exam	Term work	Pract. And	Oral	Total	
		Test1	Test2	Avg.			oral	UIAI		
ISL702	Process Automation – Lab	-	-	-		25	-	25	50	

Subject Code	Subject Name	credits					
ISL702	Process Automation – Lab	1					
Course objective	 To give the students fundamentals of automation and various automation systems used in industry such as PLC, DCS, and To impart the knowledge about the architecture, working of H SCADA and DCS To make the students capable to apply knowledge to identify and software requirements of PLC, SCADA and DCS To give the students a comprehension of the aspects related 	SCADA. PLC, hardware					
Course Outcome	Instrumented system (SIS). ne students will be able to						
	 Define automation, it's need, importance and applications in industry. Design PLC based application by proper selection and sizing criteria, developing GUI and ladder program. 						
	3. Develop any application based on SCADA along with GUI u SCADA software.	-					
	 Develop DCS program using Function Block Diagram (FBD) Describe database and alarm management system. 	 Develop DCS program using Function Block Diagram (FBD) method. Describe database and alarm management system. 					
	. Identify the components of SIS, risk reduction methods, evaluation of SIL (Safety Integrity Levels)						

Syllabus: Same as that of Subject ISC702 Process Automation.

Sr. No.	Detailed Content	CO Mapping
1.	Demonstration of PLC	CO2
2.	Processing of sensor signals by the PLC to drive various end effectors such as pneumatic/electric/hydraulic.	CO2
3.	PLC programs for process control applications (minimum 4 nos.)	CO2
4.	GUI development for anyone application using SCADA software.	CO3
5.	DCS programming using Function block diagram method	CO4
6.	Assignment/Exercise based on Automation Fundamentals	CO1
7.	Assignment/Exercise based on DCS	CO3
8.	Assignment/Exercise based on SCADA	CO4
9.	Assignment based on Database and Alarm management	CO5
10.	Assignment based on Safety Instrumented System	CO6

Any other experiments/assignments based on syllabus which will help students to understand topic/concept. Industrial visit is advised to understand the Process Automation subject.

Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 4 experiments and 4 assignments.

The distribution of marks for term work shall be as follows: Laboratory work (Experiments/Assignments): 10 Marks Laboratory work (programs / journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensure the satisfactory performance of Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme				Credit a	assigned	
	Biomedical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISL7031	Instrumentation- Lab		2			1	-	1

		Examination scheme								
			Theory (out of 1()0)		Pract.			
Subject Code	Subject Name	Internal Assessment			End sem Exam	Term work	and Oral	Oral	Total	
		Test1	Test2	Avg.		6				
ISL7031	Biomedical Instrumentation- Lab					25	-	25	50	
		•			0					

Subject Code	Subject Name	Credits					
ISL7031	Biomedical Instrumentation Lab	1					
Course objective	1. To make students perform experiments based on the principle and						
	working of various Biomedical Instruments used for Bi-	o-potential					
	measurements	. 1.					
	2. To develop skills in the design of various biomedical instrume	ents used in					
	diagnosis and life-support.						
Course Outcome	Students will be able to-						
	1. Measure and identify various Bio-potentials with their specifications.						
	2. Observe and plot various Physiological parameters						
	their specifications.						
	3. Measure the various cardiovascular parameters by designing	the related					
	circuitry.						
	4. Distinguish between the various medical imaging tech	niques by					
	comparing, principle and concept involved in each of the technique						
	5. Realize the circuitry of different life support instrum	nents, like					
	pacemaker, defibrillator.						
	6. Describe the significance of electrical safety in bio medical me	easurement.					

Syllabus: Same as that of Subject ISDOC7011 Biomedical Instrumentation.

List of the Laboratory Experiments:

Module	Contents	CO mapping
1.	Study of electrodes for various biomedical applications.	CO1
2.	Demonstration and working of instruments like EMG and EEG.	CO2
3.	Demonstration and working of instruments like ECG and PCG.	CO2
4.	To measure Blood pressure by indirect method.	CO3
5.	To study Pacemaker and various waveforms or Design and implement pacemaker circuit.	CO5
6.	To study Defibrillator and voltage waveforms or Design and implement Defibrillator circuit.	CO5
7.	Design of ECG amplifier and testing of gain frequency response with weak input signal.	CO3
8.	To design and implement ECG signal conditioning circuits with different parameter.	CO3
9.	To design and implement EMG Quantification circuit.	CO2
10.	To study Hemodialysis, Heart Lung Machine based models.	CO5
11.	ECG simulation on PC / Microcontroller.	CO3
12.	Study of working of pulse oximeter / Heart rate meter.	CO3
13.	To study respiration rate meter / respiration parameter measurement.	CO2
14.	Study on Medical Imaging Techniques	CO4
15.	Study on Electrical Safety	CO6

Any other experiment based on syllabus which will help students to understand topic/concept.

Practical and Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 08 experiments from the above given list (All six COs must be covered) and few assignments.

Hospital visit report must be attached.

The distribution of marks for term work shall be as follows:				
Laboratory work (Experiments/ Assignr	nents):10 Marks			
Laboratory work (Journal/visit)	: 10 Marks			
Attendance	: 05 Marks			

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Course Code	Course Name		eaching So Contact H			Cre	dits Assigne	ed
		Th	Pract.	Tut.	Th	Pract.	Tut.	Total
ISL7032	Machine Learning- Lab	-	2	-	-	2	- <	1
							•	

Subject]	Examinati	ion schem	le		
]	Theory (o	out of 10	0)	Term	Pract.		
Code	Subject Name	Interr	al Assess	sment	End sem Exam	work	and Oral	Oral 25	Total
		Test1	Test2	Avg.					
ISL7032	Machine Learning- Lab				2-1	25	-	25	50

Subject Code	Subject Name	Credits						
ISL7032	Machine Learning Lab	2						
Course Objectives	1. To familiarize the student with basic concepts of Machine learning algorithms							
	2. To provide understanding of the concepts of regression and classification ML algorithms.							
	3. To introduce the students to the basic concepts and application artificial neural networks	on of						
Course Outcomes	Students will be able to:							
	1. Develop programs based on supervised learning.							
	2. Implement programs based on unsupervised learning.							
	3. Execute programs on data classification.							
	4. Develop programs based on artificial neural networks.							
	5. Execute programs based on support vector machine.							
	6. Develop applications using machine learning.							

Syllabus: Same as that of Subject ISDOC7012 Machine Learning.

List of the Laboratory Experiments:

Sr. No.	Contents	CO Mapping
1.	Write a python program to implement linear regression with one variable for given dataset.	CO1
2.	Write a python program to implement linear regression with two variables for given dataset.	CO1
3.	Implement logistic regression and apply it to two different datasets.	CO2
4.	Implement one-vs-all logistic regression and neural networks to recognize hand- written digits dataset.	CO3
5.	Implement the backpropagation algorithm for neural networks and apply it to the task of hand-written digit recognition.	CO4
6.	Implement regularized linear regression and use it to study models with different bias-variance properties.	CO1
7.	Implement support vector machines (SVMs) to build a spam email classifier.	CO5
8.	Implement the K-means clustering algorithm and apply it to compress an image.	CO2
9.	Implement the anomaly detection algorithm and apply it to detect failing servers on a network	CO6
10.	Implement the Recommender Systems algorithm.	CO6

Any other experiment based on the syllabus will help students to understand the topic/concept.

Practical and Oral Examination:

Practical and Oral examinations will be based on the entire syllabus.

Term Work:

Term work shall consist of minimum 8 experiments. The distribution of marks for term work shall be as follows: Laboratory work (Experiments): 10 Marks Laboratory work (programs / journal): 10 Marks Attendance: 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Tea	ching sche	eme		Credit a	assigned	
	Subject Name Advanced Control System-Lab	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISL7033			2			1		1

					Examinat	ion schem	e		
			Theory (out of 1()0)		Pract.		
Subject Code	Subject Name	Intern	nal Assess	sment	End sem Exam	Term work	and Oral	Oral	Total
		Test1	Test2	Avg.		6			
ISL7033	Advanced Control System-Lab				F	25	-	25	50
		·			0				

Subject Code	Subject Name	Credits
ISL7033	Advanced Control System Lab	1
Course Objectives	 Students should be able to examine stability of limit cycle The students should be able to examine stability of nonlinear system techniques and Lyapunov's functions The students should be able to design the IMC structure. 	using DF
Course Outcomes	 4. The students should able to examine the stability using sliding mode 5. Students can be able to optimize the any particular system. Students will be able to- 	e control
	 Construct the phase-plane trajectories using Delta Method. Classify stability of limit cycle as per obtained response of the system Linearize the nonlinear system, identify the singular point and its na Derive DF for common nonlinearities and investigate stability of system 	stem with
	 Investigate the stability of nonlinear system using Lyapunov's funct Design the IMC based PID controller. 	10n

Syllabus: Same as that of Subject ISDOC7013 Advanced Control System.

List of the Laboratory Experiments:

Module	Contents	CO mapping
1.	Construct the trajectory for system represented by second order differential equation and for any initial condition by using Delta Method.	CO1
2.	Validate behaviour of limit cycle with the help of Vander Pol's equation.	CO2
3.	Linearize the given nonlinear system and identify the singular points and their nature.	CO3
4.	Derivation of DF for nonlinearities – relay with saturation, relay with dead-zone, dead-zone and saturation etc.	CO4
5.	Investigate the stability of system with nonlinearities – relay, saturation, dead-zone and existence of limit cycle using DF technique.	CO4
6.	Verify Sylvester theorem for the definiteness of the Lyapunov Function.	CO5
7.	Determine the stability of the system and construct the Lyapunov function for Linear Time invariant system.	CO5
8.	Determine the stability of the system and construct the Lyapunov function by using Krasovskii method	CO5
9.	Determine the stability of the nonlinear system by using Variable Gradient method	CO5
10.	Observe the effect of filter tuning parameter on step response of the first and second order systems.	CO6
11.	Design of IMC controller for a system subject to step input.	CO6
12.	Design of IMC controller for a system subject to ramp input.	CO6
13.	Design of IMC based PID controller.	CO6
14.	Design of IMC controller for delay and non-minimum phase systems.	CO6

Any other experiment based on syllabus which will help students to understand topic/concept.

Practical and Oral Examination:

Practical and Oral examination will be based on entire syllabus of ISDOC7013 Advanced Control System.

Term Work:

Term work shall consist of minimum **<u>Eight</u>** experiments. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) :	10 Marks
Laboratory work (programs / journal):	10 Marks
Attendance :	05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Tea	ching scho	eme		Credit assigned Theory Pract. Tut. Total 1 1		
	Advanced	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISL7034	Microcontroller - Lab		2			1		1

			Theory (out of 10	00)			
Subject Code	Subject Name	Interi	nal Asses	sment	End sem Exam	Term work	Oral	Total
		Test1	Test2	Avg.				
ISL7034	Advanced Microcontroller - Lab					25	25	50
	I		I					

Subject Code	Subject Name	Credits						
ISL7034	Advanced Microcontroller Lab	1						
Course Objectives	 To introduce the outline architecture of ARM microcontroller including basics pipelines, registers, exception modes, etc. Develop program ARM Cortex M3 using the various instructions for different 							
	applications and understand the basic hardware components.3. Understand and design real time operating systems which are backbon							
Course Outcomes	embedded industry.4. To introduce the setup and operate the Raspberry Pi.Students will be able to:							
	 Interpret ARM microcontroller Architecture and Operation. Use Cortex-M3 processor. 							
	 Address the implementation of Cortex-M3 processor for broad range of Explain the memory protection units and the other features of Cortex-M processor. 							
	 Introduce real time operating system and describe the principle of working of RTOS and related tasks. 							
Ť	6. Develop a platform for building low cost highly capable embedded syst Raspberry Pi.	em using						

Syllabus: Same as that of Subject ISDOC7014 Advanced Microcontroller.

List of the Laboratory Experiments:

Module	Contents			
1.	Demonstration of ARM Architecture	CO1		
2.	Implement arithmetic Operation using ARM processor	CO2		
3.	Implement logical Operation using ARM processor	CO2		
4.	Code conversion Operation using ARM processor	CO2		
5.	Implementation of program using Cortex-M3 processors	CO3		
6.	Interfacing I/Os using Cortex-M3 processors	CO3		
7.	Interfacing LM35 (Temperature Sensor) using Cortex-M3 processors	CO3		
8.	Develop applications of MPU and other Cortex-M3.	CO4		
9.	Case study on various types of RTOS.	CO5		
10.	To develop a Python program for controlling an LED with a switch.	CO6		
11.	To develop a Python program for switching LED based on LDR reading.	CO6		

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 8 experiments as per above list. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments) :	10 Marks
Laboratory work (programs / journal) :	10 Marks
Attendance:	05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned					
ISP701	Major Project – I	Theor	y Pra	ct.	Гut.	Theory		Pract.	Tut.	Total
			6#	ŧ				3	-	3
# Indicates	workload of Learner	Not Fac	ulty)							
	Subject Name	Examination scheme								
Sub		Theory (out of 100)						Pract.		
Code		Internal Assessment			En	d	Term	and	Oral	Total
		Test1	Test2	Avg.	sen Exa		work	^{·k} Oral		
ISP701	Major Project – I						50		50	100
Ł										·

Subject Code	Subject Name	Credits				
ISP701	Major Project – I					
Course Objectives	 The course is aimed 1. To acquaint with the process of identifying the needs and converting the problem. 2. To familiarize the process of solving the problem in a group. 3. To acquaint with the process of applying basic engineering fundame attempt solutions to the problems. 4. To inculcate the process of self-learning and research. 					
Course Outcomes	 On successful completion of course learner/student will be able to: 1 Identify problems based on societal /research needs. 2 Apply Knowledge and skill to solve societal problems in a group 3 Develop interpersonal skills to work as member of a group or 14 4 Draw the proper inferences from available results through theo experimental/simulations. 5 Analyze the impact of solutions in societal and environmental context for sustainable development. 6 Use standard norms of engineering practices 7 Excel in written and oral communication. 8 Demonstrate capabilities of self-learning in a group, which lead lifelong learning. 9 Demonstrate project management principles during project work 	up. eader. retical/ ds to				

Guidelines for Major Project

- Students should form groups with minimum 2(two) and not more than 4 (four)
- Students should do survey and identify needs, which shall be converted into problem statement for major project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Student shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of major project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during major project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the major Projects.

Guidelines for Assessment of Major Project:

Term Work

- The review/ progress monitoring committee shall be constituted by head of departments. The progress of major project to be evaluated on continuous basis, minimum two reviews in the semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- Distribution of Term work marks for both semesters shall be as below;

Marks awarded by guide/supervisor based on log book	: 15
Marks awarded by review committee	: 15
Quality of Project report	: 20

Review/progress monitoring committee may consider following points for assessment.

- In VII semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
 - First shall be for finalization of problem
 - Second shall be on finalization of proposed solution of problem.

Assessment criteria of Major Project-I

Major Project-I shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness

University of Mumbai, Instrumentation Engineering, REV 2019 'C' Scheme

Guidelines for Assessment of Major Project Practical/Oral Examination:

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Major Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organizations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Major Project-I shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication