

MuQuestionPapers.com

 BACHELOR OF SCIENCE (INFORMATION TECHNOLOGY)

ADVANCED WEB PROGRAMMING

CBCGS(NOV - 2022)

Q1. a) Explain foreach loop with suitable example. (5)

Ans. A foreach loop mostly used with array and collection such as ArrayList.

The foreach statement repeats a group of embedded statements for each

element in an array or an object collection. You do not need to specify the loop

bounds minimum or maximum. The foreach loop uses the ‘in’ keyword to

iterate over the iterable item. The “in” keyword selects an item from the

collection for the iteration and stores it in a variable called the loop variable,

and the value of the loop variable changes in every iteration. For example, the

first iteration process will have the first item of the collection stored; the

second iteration will have the second item of the collection stored, and so on.

A foreach loop enables us to address each element in an array using this

simple syntax:

foreach (<baseType><name> in <array>)

{

// can use <name> for each element

}

This loop will cycle through each element, placing it in the variable <name> in

turn, without danger of accessing illegal elements. We don’t have to worry

about how many elements are in the array, and we can be sure that we get to

use each one in the loop. The main difference between using this method and

a standard for loop is that foreach gives us read only access to the array

contents, so we can’t change the values of any of the elements.

Example :

// foreach loop program to illustrate the working of the loop

using System;

class loopworks

{

MuQuestionPapers.com

 static public void Main()

 {

 Console.WriteLine("Print array:"); //displays text on output window

 int[] arr_array = new int[] { 0, 1, 2, 3, 4, 5, }; // array creation

// foreach loop begins and runs till last item

foreach(int i in arr_array)

 {

 Console.WriteLine(i);

 }

 }

} // end of code

Output

Print array :

0

1

2

3

4

5

Q1. b) Distinguish between interface and abstract classes. (5)

Ans.

Aspect Interface Abstract Class

Definition Collection of abstract

members.

A class that cannot be instantiated

directly.

Members All members are

implicitly abstract and

public.

Can have both abstract and

concrete members.

Inheritance Multiple Inheritance

supported.

Single inheritance supported.

Access

Modifiers

Members are always

public

Members can have various access

modifiers

MuQuestionPapers.com

Constructors

Cannot have constructors Can have constructors to initialize

the class

Implementation Classes implement

interfaces.

Classes extend abstract class and

provide implementations for

abstract methods.

Purpose Defines a contract that

classes must follow.

Provides a common base for

related classes.

Relationship Promotes loose coupling. Provides a hierarchical relationship.

Q1. c) What is namespace? Describe the system namespace. (5)

Ans. A namespace is designed for providing a way to keep one set of names

separate from another. The class names declared in one namespace does not

conflict with the same class names declared in another. It is not possible to use

any access specifiers like private, public etc with a namespace declarations. The

namespaces in C# implicitly have public access and this is not modifiable. The

namespace elements can't be explicitly declared as private or protected. The

namespace allows only public and internal elements as it members. The default

is internal.

Defining a Namespace :

A namespace definition begins with the keyword namespace followed by the

namespace name as follows:

namespace namespace_name

{

 // code declarations

}

Example:

using System;

namespace first_space

{

class namespace_cl

 {

MuQuestionPapers.com

public void func()

 {

Console.WriteLine("Inside first_space");

 }

}

}

namespace second_space

{

class namespace_cl

 {

public void func()

 {

Console.WriteLine("Inside second_space");

 }

 }

}

class TestClass

{

static void Main(string[] args)

 {

first_space.namespace_cl fc = new first_space.namespace_cl();

second_space.namespace_cl sc = new second_space.namespace_cl();

fc.func();

sc.func();

Console.ReadKey();

 }

}

The System namespace is the root namespace for fundamental types in . NET.
This namespace includes classes that represent the base data types used by all
applications, for example, Object (the root of the inheritance hierarchy), Byte,
Char, Array, Int32, and String.

MuQuestionPapers.com

The using Keyword

The using keyword states that the program is using the names in the given

namespace. For example, we are using the System namespace in our programs.

The class Console is defined there.

We just write:

Console.WriteLine ("Hello there");

We could have written the fully qualified name as:

System.Console.WriteLine("Hello there");

Alias of Namespace:

using A=System.Console;

class Test

{

static void Main()

 {

A.Write("Craetion of Alias");

A.ReadKey();

 }

}

Q1. d) What is an assembly? Explain the difference between public and

private assembly? (5)

Ans. An assembly in ASP.NET is a collection of single-file or multiple files. The

assembly that has more than one file contains either a dynamic link library

(DLL) or an EXE file. The assembly also contains metadata that is known as

assembly manifest. The assembly manifest contains data about the versioning

requirements of the assembly, author name of the assembly, the security

requirements that the assembly requires to run, and the various files that form

part of the assembly. The biggest advantage of using ASP.NET Assemblies is

that developers can create applications without interfering with other

applications on the system. When the developer creates an application that

requires an assembly that assembly will not affect other applications. The

MuQuestionPapers.com

assembly used for one application is not applied to another application.

However, one assembly can be shared with other applications. An assembly is a

fundamental building block of any .NET framework application. It contains the

code that is executed by common language runtime. For example, when we

build a simple C# application, Visual Studio creates an assembly in the form of a

single portable executable (PE) file, specifically an EXE or DLL.

Components of Assembly

1. Manifest

It describes the assembly. The manifest file contains all the metadata needed

to specify the assembly's version requirements, security identity, and all

metadata needed to define the scope of the assembly and resolve references

to resources and classes.

2.Type Metadata

It contains metadata, which describes each type (class, structure, enumeration,

and so forth)

3.MSIL

It contains Intermediate language code.

4.Resources

It contains bitmaps, icons, audios and other types of resources.

Public Assembly Private Assembly

1.Public Assembly can be used by

multiple applications.

1.Private assembly can be used by

only one application.

2.Public assembly is stored in

GAC (Global Assembly Cache.)

2.Private assembly will be stored in

the specific application’s directory or

sub-directory.

3. Public assembly is also known

as shared assembly.

3. There is no other name for private

assembly.

4.Strong name has to be created

for public assembly.

4.Strong name is not required for

private assembly.

MuQuestionPapers.com

Q1. e) Write a sample C# program to demonstrate class, object and method

call. Use comments wherever required. (5)

Ans.

In C#,

Class: A blueprint or template that defines the structure and behavior of

objects.

Object: An instance of a class that represents a real-world entity and holds its

own set of data.

Method: A function defined within a class that operates on the data of its

object.

Code :
using System;

class Car

{

 public string Make { get; set; }

 public string Model { get; set; }

 public void StartEngine()

 {

 Console.WriteLine("Engine started!");

 }

}

class Program

{

 static void Main()

 {

 // Creating an object of the Car class

5.Public assembly should strictly

enforce version constraint.

5.Private assembly doesn’t have any

version constraint.

6.An example to public assembly

is the actuate report classes which

can be imported in the library and

used by any application that

prefers to implement actuate

reports.

6.By default, all assemblies you create

are examples of private

assembly.Only when you associate a

strong name to it and store it in GAC,

it becomes public assembly.

MuQuestionPapers.com

 Car myCar = new Car();

 myCar.Make = "Toyota";

 myCar.Model = "Corolla";

 // Calling the StartEngine method of the Car class on the object

 myCar.StartEngine();

 // Creating another object of the Car class

 Car anotherCar = new Car();

 anotherCar.Make = "Honda";

 anotherCar.Model = "Civic";

 // Calling the StartEngine method on the second object

 anotherCar.StartEngine();

 Console.ReadLine();

 }

}

In this program, we defined a ‘Car’ class with properties ‘Make’ and ‘Model’,

and a method ‘StartEngine’. Then, in the Main method, we created two Car

objects using the ‘new’ keyword, set their properties, and call the ‘StartEngine’

method on each of them.

When we run this code, the output will be :

Engine started!

Engine started!

In C# Each object has its own set of properties and can invoke methods

independently.

Q1. f) Define the accessibility modifiers – public, private, protected, internal

and protected internal. (5)

Ans. Accessibility modifiers are used to control the visibility and accessibility of

classes, methods, properties, and other members within a program. The

following modifiers are as follows :

MuQuestionPapers.com

1. Public: The `public` modifier makes a class or member accessible from any

other code in the same assembly or from other assemblies that reference it. It

has the widest accessibility.
 Example:

 public class MyClass

 {

 public int MyProperty { get; set; }

 public void MyMethod() { }

 }

2. Private: The `private` modifier restricts the accessibility of a class member to

within the same class. It cannot be accessed from outside the class, including

derived classes.

Example:

 public class MyClass

 {

 private int myPrivateField;

 private void MyPrivateMethod() { }

 }

3. Protected: The `protected` modifier allows access to a member within the

same class or from derived classes. It is not accessible from outside the class

hierarchy.

 Example:

 public class MyBaseClass

 {

 protected int myProtectedField;

 protected void MyProtectedMethod() { }

 }

 public class MyDerivedClass : MyBaseClass

 {

 public void AccessProtectedMembers()

 {

 myProtectedField = 42;

 MyProtectedMethod();

 }

MuQuestionPapers.com

 4.Internal: The `internal` modifier allows access to a member within the same

assembly but restricts access from other assemblies. It is useful when you want

to expose members only to code within the same project.

 Example:

 internal class InternalClass

 {

 internal int MyInternalField;

 internal void MyInternalMethod() { }

 }

5. Protected Internal: The `protected internal` modifier combines the behavior

of `protected` and `internal`. It allows access to a member within the same

assembly or from derived classes, regardless of whether they are in the same

assembly or a different one.

Example:

 public class MyBaseClass

 {

 protected internal int myProtectedInternalField;

 protected internal void MyProtectedInternalMethod() { }

 }

 public class MyDerivedClass : MyBaseClass

 {

 public void AccessProtectedInternalMembers()

 {

 myProtectedInternalField = 42;

 MyProtectedInternalMethod();

 }

 }

Accessibility Modifiers play a vital role in defining the scope and security of

your code and controlling how different parts of your application interact with

each other.

Q2. a) What is postback?Explain IsPostBack property with example. (5)

Ans. Defining postback

"postback" refers to the process where a web page is posted back to the server

for processing after the initial request was sent by the client (usually a user

MuQuestionPapers.com

clicking a button or triggering an event on the web page). When a postback

occurs, the server processes the data, raises the appropriate events, and sends

a response back to the client, updating the web page accordingly.

IsPostBack property

IsPostBack is a property is the property that allows you to determine whether

the current request to the server is the result of a postback or the initial page

load. It returns a boolean value, true if the current request is a postback, and

false if it's the initial page load. IsPostBack property is always false by default.

Example :

WebForm1.aspx

<asp:TextBox ID="txtName" runat="server"></asp:TextBox>

<asp:Button ID="btnSubmit" runat="server" Text="Submit"

OnClick="btnSubmit_Click" />

<asp:Label ID="lblMessage" runat="server"></asp:Label>

WebForm1.aspx.cs

protected void Page_Load(object sender, EventArgs e)

{

 if (!IsPostBack)

 {

 lblMessage.Text = "Welcome! Please enter your name.";

 }

}

protected void btnSubmit_Click(object sender, EventArgs e)

{

 string name = txtName.Text;

 lblMessage.Text = "Hello, " + name + "! Thank you for submitting.";

}

Explanation:

• The `Page_Load` event handler runs when the page is first loaded

(`IsPostBack` is `false`). It sets the initial text of the `lblMessage` label to

display a welcome message with instructions.

MuQuestionPapers.com

• When the user enters their name in the TextBox (`txtName`) and clicks

the "Submit" Button (`btnSubmit`), the `btnSubmit_Click` event handler

is triggered.

• The `btnSubmit_Click` event handler retrieves the entered name, and

updates the `lblMessage` label with a personalized greeting message,

thanking the user for submitting their name.

• The `IsPostBack` property helps in setting up the initial welcome

message during the first page load and handling the personalized

greeting message only on subsequent postbacks (when the button is

clicked).

Q2. b) List and describe the various file types used in an ASP.NET application.(5)

Ans. In ASP.NET, we can work with various file types for different purposes,

such as source code files, configuration files, data files, content files, and more.

Some common file types are as follows :

File Name Description

Ends with .aspx These are ASP.NET web pages. They contain the user interface

and, optionally, the underlying application code. Users

request or navigate directly to one of these pages to start

your web application.

Ends with .ascx These are ASP.NET user controls. User controls are similar to

web pages, except that the user can’t access these files

directly. Instead, they must be hosted inside an ASP.NET web

page. User controls allow you to develop a small piece of user

interface and reuse it in as many web forms as you want

without repetitive code..

web.config This is the configuration file for your ASP.NET application. It

includes settings for customizing security, state management,

memory management, and much more.

global.asax This is the global application file. You can use this file to

define global variables (variables that can be accessed from

any web page in the web application) and react to global

events (such as when a web application first starts).

https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/

MuQuestionPapers.com

Ends with .cs These are code-behind files that contain C# code. They allow

you to separate the application logic from the user interface

of a web page.

ASP.NET Folders

Directory Description

App_Browsers Contains .browser files that ASP.NET uses to identify

the browsers that are using your application and

determine their capabilities.

App_Code Contains source code files that are dynamically

compiled for use in your application.

App_GlobalResources Stores global resources that are accessible to every

page in the web application. This directory is used in

localization scenarios, when you need to have a

website in more than one language.

App_LocalResources Serves the same purpose as App_GlobalResources,

except these resources are accessible to a specific

page only.

App_WebReferences Stores references to web services, which are remote

code routines that a web application can call over a

network or the Internet.

App_Data Stores data, including SQL Server Express database

files. You’re free to store data files in other

directories.

App_Themes Stores the themes that are used to standardize and

reuse formatting in your web application

Bin Contains all the compiled .NET components (DLLs)

that the ASP.NET web application uses here.

https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/

MuQuestionPapers.com

Q2. c) What is an event ? How is an event handler added? (5)

Ans. An event

An event in ASP.NET is an action or occurrence that happens on a web page,

such as a button click or page load. Events allow you to respond to user

interactions or system actions.

Adding an event handler

Most of the code in an ASP.NET web page is placed inside event handlers that

react to web control events.

1. Define the Event Handler Method:

In the code-behind file (e.g., ExamplePage.aspx.cs) of your ASP.NET web page

or user control, create a method that will handle the event. This method

should have a specific signature based on the event you want to handle.

2. Subscribe to the Event:

In the markup (ASPX) file (e.g., ExamplePage.aspx), locate the control (e.g.,

button) that triggers the event. Add an attribute like OnClick or OnLoad to the

control, and set its value to the name of the event handler method you defined

in step 1.

3. Handle the Event:

When the event occurs during the page lifecycle (e.g., button is clicked), the

event handler method you defined will automatically execute. You can now add

the desired logic inside that method to respond to the event.

Q2. d) Write short note on list controls in ASP.NET. (5)

Ans. The list controls include the ListBox, DropDownList, CheckBoxList,

RadioButtonList, and BulletedList. They all work in essentially the same way but

are rendered differently in the browser. The ListBox, for example, is a

rectangular list that displays several entries, while the DropDownList shows

only the selected item. The CheckBoxList and RadioButtonList are similar to the

MuQuestionPapers.com

ListBox, but every item is rendered as a check box or option button,

respectively.

Multiple-Select List Controls

Some list controls can allow multiple selections. This isn’t allowed for the

DropDownList or RadioButtonList, but it is supported for a ListBox, provided

you have set the SelectionMode property to the enumerated value

ListSelectionMode.Multiple. The user can then select multiple items by holding

down the Ctrl key while clicking the items in the list.The SelectedIndex and

SelectedItem properties aren’t much help with a list that supports multiple

selection, because they will simply return the first selected item. Instead, we

can find all the selected items by iterating through the Items collection of the

list control and checking the ListItem.

The Bulleted List Control

The Bulleted List control is a server-side equivalent of the (unordered list)

and (ordered list) elements. As with all list controls, we can set the

collection of items that should be displayed through the Items property.

Q2. e) Explain the need of user control. How is it used and created? (5)

Ans. A User Control is a separate, reusable part of a page. We can put a piece

of a page in a User Control, and then reuse it from a different location. A

notable difference is that User Controls can be included on multiple pages,

while a page can't. User Controls are used much like regular server controls,

and they can be added to a page declaratively, just like server controls can. A

big advantage of the User Control is that it can be cached, using the Output

Cache functionality described in a previous chapter, so instead of caching an

entire page, we may cache only the User Control, so that the rest of the page is

still re-loaded on each request.

Creation of User Control:

Following steps are used to create User Control.

1. Open Visual Studio.

2. "File" -> "New" -> "Project..." then select ASP.NET Webform Application.

MuQuestionPapers.com

3. Add a new web form.

To create a new User Control, in Solution Explorer, Add New Item, provide your

File Name and click Add. Design User Control as per our requirement. Next step

to use User Control in .aspx page.

Add the following line below the standard page declaration:
<%@RegisterTagPrefix="My"TagName="UserInfoBoxControl"Src="~/UserInfoBox

Control.ascx" % >

Make sure that the src value matches the path to your User Control file. Now

you may use the User Control in your page, like any other control. For instance,

like this:
<My:UserInfoBoxControlrunat="server"ID="MyUserInfoBoxControl"/>

Q2. f) What is the purpose of validation controls? List and explain the use of

validation controls available in ASP.NET. (5)

Ans. Validation is important part of any web application. User's input must

always be validated before sending across different layers of the application.

 Validation controls are used to:

➢ Implement presentation logic.

➢ To validate user input data.

➢ Data format, data type and data range is used for validation.

➢ Validation Controls in ASP.NET

Object

System Namespace

System.Web.UI Namespace

Control

TemplateControl

UserControl l Page

mailto:%25@RegisterTagPrefix=%22My%22TagName=%22UserInfoBoxControl%22Src=%22~/UserInfoBoxControl.ascx%22%20%25
mailto:%25@RegisterTagPrefix=%22My%22TagName=%22UserInfoBoxControl%22Src=%22~/UserInfoBoxControl.ascx%22%20%25
https://e-next.in/
https://e-next.in/
https://e-next.in/
https://e-next.in/

MuQuestionPapers.com

An important aspect of creating ASP.NET Web pages for user input is to be able

to check that the information users enter is valid. ASP.NET provides a set of

validation controls that provide an easy-touse but powerful way to check for

errors and, if necessary, display messages to the user.

There are six types of validation controls in ASP.NET

• RequiredFieldValidation Control

• CompareValidator Control

• RangeValidator Control

• RegularExpressionValidator Control

• CustomValidator Control

• ValidationSummary

The below table describes the controls and their work:

Validation Control Description

RequiredFieldValidation Makes an input control a required field.

CompareValidator Compares the value of one input control to the value of
another input control or to a fixed value.

RangeValidator Checks that the user enters a value that falls between
two values.

RegularExpressionValidator Ensures that the value of an input control matches a
specified pattern.

CustomValidator Allows you to write a method to handle the validation of
the value entered.

ValidationSummary Displays a report of all validation errors occurred in a
Web page.

1. RequiredFieldValidator Control

The RequiredFieldValidator control is simple validation control, which checks to

see if the data is entered for the input control. We can have a

RequiredFieldValidator control for each form element

The syntax of the control is as given:
<asp:RequiredFieldValidator ID="rfvcandidate" runat="server"

ControlToValidate="txtName" ErrorMessage="Please enter name !!">

</asp:RequiredFieldValidator>

MuQuestionPapers.com

2. RangeValidator Control

The RangeValidator Server Control is another validator control, which checks to

see if a control value s within a valid range. The attributes that are necessary to

this control are: MaximumValue, MinimumValue, and Type.

The syntax of the control is as given:
<asp:RangeValidator ID="rvclass" runat="server" ControlToValidate="txtclass"

ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"

 MinimumValue="6" Type="Integer">

</asp:RangeValidator>

3. RegularExpressionValidator

The RegularExpressionValidator allows validating the input text by matching

against a pattern of a regular expression. The regular expression is set in the

ValidationExpression property.

The syntax of the control is as given:
<asp:RegularExpressionValidator ID="string" runat="server"

ErrorMessage="string"

 ValidationExpression="string" ValidationGroup="string">

</asp:RegularExpressionValidator>

Q3. a) Describe the use of multiple catch statements in exception handling

using example. (5)

Ans. Exception handling:

The mechanism of Exception Handling is throwing an exception and catching it

C# uses try-catch block. Code which may give rise to exceptions is enclosed in a

try block, and Catch block catches that exception and handles it appropriately.

The try block is followed by one or more catch blocks.

Structured exception handling provides several key features:

1. Exceptions are object-based: Each exception provides a significant amount

of diagnostic information wrapped into a neat object, instead of a simple

message and error code. These exception objects also support an

InnerException property that allows you to wrap a generic error over the more

specific error that caused it.

MuQuestionPapers.com

2. Exceptions are caught based on their type: This allows you to streamline

error-handling code without needing to sift through obscure error codes.

3. Exception handlers use a modern block structure: This makes it easy to

activate and deactivate different error handlers for different sections of code

and handle their errors individually.

4. Exception handlers are multilayered: You can easily layer exception handlers

on top of other exception handlers, some of which may check for only a

specialized set of errors. As you’ll see, this gives you the flexibility to handle

different types of problems in different parts of your code, thereby keeping

your code clean and organized.

5. Exceptions are a generic part of the .NET Framework: This means they’re

completely cross-language compatible. Thus, a .NET component written in C#

can throw an exception that you can catch in a web page written in VB.

Basic syntax:
try

{

//programming logic(code which may give rise to exceptions)

}

catch (Exception e)

{

//message on exception

}

finally

{

// always executes

}

Try: A try block identifies a block of code for which particular exceptions will be

activated. It's followed by one or more catch blocks.

Catch: A program catches an exception with an exception handler at the place

in a program where you want to handle the problem. The catch keyword

indicates the catching of an exception.

Finally: The finally block is used to execute a given set of statements, whether

an exception is thrown or not thrown. For example, if you open a file, it must

be closed whether an exception is raised or not.

Example:
using System;

MuQuestionPapers.com

class tryCatch

{

public static void Main()

{

int k=0;

try

{

int n= 10/k;

Console.WriteLine(”n=” + n);

}

catch(Exception e)

{

Console .WriteLine (“Division By zero exception”);

}

Console.WriteLtne(”Statement executed after Exception because of try catch”);

}

Q3. b) What is QueryString? How to send a name and marks of a student

from one page to another using QueryString? (5)

Ans. Query String is the most simple and efficient way of maintaining

information across requests. The information we want to maintain will be sent

along with the URL. A typical URL with a query string looks like

www.somewebsite.com/search.aspx?query=foo

The URL part which comes after the? Symbol is called a QueryString.

QueryString has two parts, a key and a value. In the above example, query is

the key and foo is its value. We can send multiple values through querystring,

separated by the & symbol.

To send a name and marks of a student from one page to another using

QueryString following are the steps:

Step 1: Create Page1.aspx (Source Page)

Page1.aspx
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Page1.aspx.cs"

Inherits="MyNamespace.Page1" %>

<!DOCTYPE html>

http://www.somewebsite.com/search.aspx?query=foo

MuQuestionPapers.com

<html>

<head>

 <title>Page 1</title>

</head>

<body>

 <form runat="server">

 <label for="txtName">Name:</label>

 <asp:TextBox runat="server" ID="txtName"></asp:TextBox>

 <label for="txtMarks">Marks:</label>

 <asp:TextBox runat="server" ID="txtMarks"></asp:TextBox>

 <asp:Button runat="server" ID="btnSubmit" Text="Submit"

OnClick="btnSubmit_Click" />

 </form>

</body>

</html>

Page1.aspx.cs
using System;

namespace MyNamespace

{

 public partial class Page1 : System.Web.UI.Page

 {

 protected void btnSubmit_Click(object sender, EventArgs e)

 {

 string name = txtName.Text;

 int marks = Convert.ToInt32(txtMarks.Text);

 // Redirect to Page2 with QueryString parameters

 Response.Redirect($"Page2.aspx?name={name}&marks={marks}");

 }

 }

}

Step 2: Create Page2.aspx

Page2.aspx
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Page2.aspx.cs"

Inherits="MyNamespace.Page2" %>

<!DOCTYPE html>

<html>

MuQuestionPapers.com

<head>

 <title>Page 2</title>

</head>

<body>

 <form runat="server">

 <asp:Label runat="server" ID="lblResult"></asp:Label>

 </form>

</body>

</html>

Page2.aspx.cs
using System;

namespace MyNamespace

{

 public partial class Page2 : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 // Check if the QueryString parameters exist

 if (Request.QueryString["name"] != null && Request.QueryString["marks"] !=

null)

 {

 // Get the name and marks from the QueryString

 string name = Request.QueryString["name"];

 int marks = Convert.ToInt32(Request.QueryString["marks"]);

 // Display the result on the page

 lblResult.Text = $"Name: {name}, Marks: {marks}";

 }

 }

 }

}

In this example, when the user enters the name and marks on Page1.aspx and

clicks the "Submit" button, the data will be sent to Page2.aspx using

QueryString. On Page2.aspx, the received name and marks will be displayed on

the page.

MuQuestionPapers.com

Q3. c) Explain the events in global.asax file with respect to state

management. (5)

Ans.ASP.NET implements application state using the

System.Web.HttpApplicationState class. It provides methods for storing

information which can be accessed globally. Information stored on application

state will be available for all the users using the website. Usage of application

state is the same as sessions. The following code shows storing a value in an

application variable and reading from it.

Application["pageTitle"] = "Welcome to my website - ";

String pageTitle;

if (Application["pageTitle"] != null)

pageTitle = Application["pageTitle"].ToString();

We should get a basic knowledge about the events associated with application

and session.

These events can be seen in the global.asax file.

• Application_Start: This event executes when application initializes. This will

execute when ASP.NET worker process recycles and starts again.

• Application_End: Executes when the application ends.

• Session_Start: Executes when a new session starts.

• Session_End: Executes when session ends.

Note: this event will be fired only if you are using InProc as session

mode.

Example

The most common usage of application variables is to count the active number

of visitors that are browsing currently.

The following code shows how this is done.

void Application_Start(object sender, EventArgs e)

{

// Application started - Initializing to 0

Application["activeVisitors"] = 0;

}

void Session_Start(object sender, EventArgs e)

{

if (Application["activeVisitors"] != null)

{

MuQuestionPapers.com

Application.Lock();

int visitorCount = (int)Application["activeVisitors"];

Application["activeVisitors"] = visitorCount++;

Application.UnLock();

}

}

Data stored in session will be kept in server memory and it is protected as it

will never get transmitted to a client. Every client that uses the application will

have separate sessions. Session state is ideal for storing

user specific information.

Session State

• Session state is user and browser specific.

• Session state can be stored in memory on the server as well as client's

cookies. If client has disabled cookies in his browser then session state

will be stored in URL.

• Session state has scope to the current browser only. If we change the

browser session id is changed.

Application State

• Application state is application specific.

• Application state is stored only in the memory on the server.

• Application state does not track client's cookies or URL.

• Application state has no scope to the current browser. If we change the

browser application id remains same.

Q3. d) How is the connection between content page and master page is

established? (5)

Ans. ASP.NET master pages allow us to create a consistent layout for the pages

in our application. A single master page defines the look and feel and standard

behavior that we want for all of the pages (or a group of pages) in our

application. We can then create individual content pages that contain the

content we want to display. When users request the content pages, they

merge with the master page to produce output that combines the layout of the

MuQuestionPapers.com

master page with the content from the content page. Master pages actually

consist of two pieces, the master page itself and one or more content pages.

Use of Master Pages

The master pages can be used to accomplish the following:

✓ Creating a set of controls that are common across all the web pages and

attaching them to all the web pages.

✓ A centralized way to change the above created set of controls which will

effectively change all the web pages.

✓ To some extent, a master page looks like a normal ASPX page.

✓ It contains static HTML such as the <html>, <head>, and <body>

elements, and it can also contain other HTML and ASP.NET server

controls. Inside the master page, you set up the markup that you want to

repeat on every page, like the general structure of the page and the

menu.

✓ However, a master page is not a true ASPX page and cannot be

requested in the browser directly it only serves as the template that real

web pages called content pages

✓ One difference is that while web forms start with the Page directive, a

master page starts with a Master directive that specifies the same

MuQuestionPapers.com

information, as shown here

Q3. e) What is the theme? Explain how to create and use a theme on a

website. (5)

Ans. A theme decides the look and feel of the website. It is a collection of files

that define the looks of a page. It can include skin files, CSS files & images.

We define themes in a special App_Themes folder. Inside this folder is one or

more subfolders named Theme1, Theme2 etc. that define the actual themes.

The theme property is applied late in the page's life cycle, effectively overriding

any customization we may have for individual controls on our

page.

There are 3 different options to apply themes to our website:

1. Setting the theme at the page level: The Theme attribute is added to the

page directive of the page.

<%@PageLanguage="C#"AutoEventWireup="true"CodeFile="Default.aspx.cs"In

herits="Default"Theme="Theme1"%>

2. Setting the theme at the site level: To set the theme for the entire website

we can set the theme in the web.config of the website. Open the web.config

file and locate the <pages> element and add the theme attribute to it:

<pagestheme="Theme1">

....

....

</pages>

3. Setting the theme programmatically at runtime: here the theme is set at

runtime through coding. It should be applied earlier in the page's life cycle ie.

Page_PreInit event should be handled for setting the theme. The better option

is to apply this to the Base page class of the site as every page in the site

inherits from this class.

Page.Theme = Theme1;

MuQuestionPapers.com

Uses of Themes

1. Since themes can contain CSS files, images and skins, you can change colors,

fonts, positioning and images simply by applying the desired themes.

2. We can have as many themes as we want, and we can switch between them

by setting a single attribute in the web.config file or an individual aspx page.

Also, we can switch between themes programmatically.

3. Setting the themes programmatically, we are offering our users a quick and

easy way to change the page to their likings.

4. Themes allow us to improve the usability of our site by giving users with

vision problems the option to select a high contrast theme with a large font

size.

Q3. f) What is URL mapping? How is URL mapping and routing implemented

in ASP.NET? (5)

Ans. In some situations, you might want to have several URLs lead to the same

page. This might be the case for a number of reasons—maybe you want to

implement your logic in one page and use query string arguments but still

provide shorter and easier to remember URLs to your website users (often

called friendly URLs).

The mapping rules are stored in the web.config file and they are applied before

any other processing takes place. You define URL mapping in the <urlMapping>

section of the web.config file. You supply two pieces of information—the

request URL(as the url attribute) and the new destination URL (mappedUrl).

<configuration>

<system.web>

<urlMapping enabled=”true”>

<add url=”~/category.aspx” mappedUrl=”~/default.aspx?category=default” />

<add url=”~/software.aspx” mappedUrl=”~/deault.aspx?category=software” />

</urlMappings>

</system.web>

</configuration>

MuQuestionPapers.com

URL Routing

URL routing doesn’t take place in the web.config file. Instead, it’s implemented

using code. To register a route, you use the RouteTable class from the

System.Web.Routing namespace. To make life easier, you can start by importing

that namespace: using System.Web.Routing; create custom routes by calling

the MapPageRoute() method, which takes three arguments:

• routeName: This is a name that uniquely identifies the route. It can be

whatever you want.

• routeUrl: This specifies the URL format that browsers will use. Typically, a

route URL consists of one or more pieces of variable information,

separated by slashes, which are extracted and provided to your code. For

example, you might request a product page by using a URL such as

/products/4312.

• physicalFile: This is the target web form—the place where users will be

redirected when they use the route. The information from the original

routeUrl will be parsed and made available to this page as a collection

through the Page.RouteData property.

Example

Protected void Application_Start(object sender, EventArgs e)

{

RouteTable.Routes.MapPageRoute(“routeName”,”routeUrl”, “physicalFile”);

RouteTable.Routes.MapPageRoute(“product-details”,

“product/{productiID}”, “~/productinfo.aspx””);

}

http://localhost:[PortNumber]/Routing/product/FI_00345

protected void Page_Load(object sender, EventArgs e)

{

 String productid = (string)Page.RouteDataValues[“productID”];

 lblInfo.Text = “You requested” + productID;

}

Q4. a) Describe the SqlConnection class with an example. (5)

Ans. The SqlConnection class

• The most important property of this class is ConnectionString. A

Connection String is a string that provides the information that’s

http://localhost:[PortNumber]/Routing/product/FI_00345

MuQuestionPapers.com

needed to connect to a database server. It can also contain

authentication information such as a user id and password.

• The two methods of this class that are shown in this figure let you

open and close the connection. In general, you should leave a

connection open only while data is being retrieved or updated.

When you use a data adapter, though the connection is opened

and closed for you so you don’t need to use these methods.

Some Common members of the SqlConnection class

Property Description

ConnectionString Contains information that let’s you
connect to a SQL Server
database,including the server name,
the database name and login
information.

Method Description

Open Opens a connection to a database.

Close Closes a connection to a database.

using System;

using System.Collection.Generic;

using System.Text;

using System.Data.SqlClient;

namespace CommandTypeEnumeration

{

 Class Program

 {

 Static void Main(string[] args)

 {

 //Create a connection string

 String ConnectionString = “Integrated Security = SSPI; +”Initial

Catalog= Northwind; ”+” Data source = localhost; “;

String SQL = “SELECT * FROM Customers”;

//create a connection object

SqlConnection conn = new SqlConnection(ConnectionString);

//Create a command object

MuQuestionPapers.com

SqlCommand cmd = new SqlCommand(SQL,conn);

conn.Open();

//Call ExecuteReader to return a DataReader

SqlDataReader reader = cmd.ExecuteReader();

Console.WriteLine(“customer ID, Contact Name, “+” Contact Title, Address”);

Console.WriteLine(“=====================”);

while(reader.Read())

{

 Console.Write(reader[“CustomerID”].ToString() + “, “);

 Console.Write(reader[“ContactName”].ToString() +”, “);

 Console.Write(reader[“ContactTitle”].ToString() +”, “);

 Console.WriteLine(reader[“Address”].ToString() +”, “);

 }

//Release resources

 Reader.Close()

 Conn.Close();

 }

 }

 }

Q4. b) Differentiate between DataSet and DataReader. (5)

Ans.

DataSet DataReader

1. The DataSet class in ADO.Net operates
in an entirely disconnected nature.

1.DataReader is a connection
oriented service.

2.DataSet is an in-memory
representation of a collection of
Database objects including related tables,
constraints and relationships among the
tables.

2.DataReader is designed to
retrieve a read-only, forward-only
stream of data from data sources.

3. It fetches entire table or tables at a
time so greater network cost.

3.It fetches one row at a time so
very less network.

4. DataSet is not read-only so we can do
any transaction on them.

4.DataReader is read-only so we
can’t do any transaction on them.

5.DataAdapter is used to get data in
DataSet.

5.DataAdapter is not required.

MuQuestionPapers.com

6.DataSet works with the help of xml
technology.

6.DataReader doesn’t provide
this feature.

7. Example

Dataset ds=new Dataset();

DataAdapter1Fill(ds,”newtablename”)

//where new table name is table alias
name in dataset.

7.Example:

SqlCommand cmd = new
sqlcommand(select * from
emptable);

Data Reader dr =
cmd.ExecuteReader()

Q4. c) Write a C# code to insert data in database table. Write comments

wherever required. (5)

Ans.

using System;

using System.Data.SqlClient;

class Program

{

 static void Main()

 {

 // Replace the connection string with your actual database connection string

 string connectionString = "Data Source=YourServer;Initial

Catalog=YourDatabase;Integrated Security=True";

 // Sample data to be inserted into the table

 string name = "John Doe";

 int age = 25;

 try

 {

 // Create a new SqlConnection object with the connection string

 using (SqlConnection connection = new SqlConnection(connectionString))

 {

 // Open the database connection

 connection.Open();

 // Write your SQL query to insert data into the table

MuQuestionPapers.com

 string insertQuery = "INSERT INTO YourTableName (Name, Age) VALUES

(@Name, @Age)";

 // Create a new SqlCommand object with the SQL query and connection

 using (SqlCommand command = new SqlCommand(insertQuery,

connection))

 {

 // Add parameters to the SqlCommand to prevent SQL injection and

provide values

 command.Parameters.AddWithValue("@Name", name);

 command.Parameters.AddWithValue("@Age", age);

 // Execute the INSERT query

 int rowsAffected = command.ExecuteNonQuery();

 // Check the number of rows affected to ensure data insertion

 if (rowsAffected > 0)

 {

 Console.WriteLine("Data inserted successfully!");

 }

 else

 {

 Console.WriteLine("Data insertion failed!");

 }

 }

 }

 }

 catch (Exception ex)

 {

 // Handle any exceptions that may occur during the process

 Console.WriteLine("An error occurred: " + ex.Message);

 }

 }

}

MuQuestionPapers.com

Q4. d) What is the use of data source control? Explain various types of data

sources in ASP.NET.

Ans. The Data source control connects to and retrieves data from a data source

and makes it available for other controls to bind to, without requiring code.

ASP.NET allows a variety of data sources such as a database, an XML file, or a

middle-tier business object.

The common data source controls are:

• AccessDataSource – Enables you to work with a Microsoft Access

database.

• XmlDataSource – Enables you to work with an XML file.

• SqlDataSource – Enables you to work with Microsoft SQL Server, OLE DB,

ODBC, or Oracle databases.

• ObjectDataSource – Enables you to work with a business object or other

class.

• SiteMapDataSource – Used for ASP.NET site navigation.

• EntityDataSource - Enables you to bind to data that is based on the

Entity Data Model.

• LinqDataSource – Enables you to use Language-Integrated Query (LINQ)

in an ASP.NET Web page

Q4. e) Write a code to display data from a table named Students(Roll no,

Name, Marks and display it on gridview control when page is loaded. (5)

Ans. using System;

using System.Data;

using System.Data.SqlClient;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class StudentsPage : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 // Replace the connection string with your actual database connection string

MuQuestionPapers.com

 string connectionString = "Data Source=YourServer;Initial

Catalog=YourDatabase;Integrated Security=True";

 try

 {

 // Create a new SqlConnection object with the connection string

 using (SqlConnection connection = new SqlConnection(connectionString))

 {

 // Write your SQL query to retrieve data from the Students table

 string query = "SELECT RollNo, Name, Marks FROM Students";

 // Create a new SqlCommand object with the SQL query and connection

 using (SqlCommand command = new SqlCommand(query, connection))

 {

 // Open the database connection

 connection.Open();

 // Create a new SqlDataAdapter to fetch data from the database

 using (SqlDataAdapter dataAdapter = new SqlDataAdapter(command))

 {

 // Create a new DataTable to store the retrieved data

 DataTable dataTable = new DataTable();

 // Fill the DataTable with data from the Students table

 dataAdapter.Fill(dataTable);

 // Bind the DataTable to the GridView control to display the data

 gvStudents.DataSource = dataTable;

 gvStudents.DataBind();

 }

 }

 }

 }

 catch (Exception ex)

 {

 // Handle any exceptions that may occur during the process

 // For simplicity, just display the error message on the page

 lblError.Text = "An error occurred: " + ex.Message;

 }

 }

MuQuestionPapers.com

 }

}

Q4. f) Describe i)ExecuteNonQuery ii) ExecuteScalar iii)ExecuteReader. (5)

Ans. In C#, these three methods are part of the ADO.NET framework, which is

used for data access and manipulation with databases. Each of these methods

serves a different purpose and is commonly used in different scenarios:

i) ExecuteNonQuery:

• The ExecuteNonQuery method is used to execute SQL statements that

do not return any data, such as INSERT, UPDATE, DELETE, and DDL (Data

Definition Language) statements (e.g., CREATE, ALTER, DROP).

• It is primarily used for modifying data in the database rather than

retrieving data.

• The method returns the number of rows affected by the SQL statement.

• For example, if you execute an INSERT statement, it will return the

number of rows inserted into the table.

ii) ExecuteScalar:

• The ExecuteScalar method is used to execute SQL queries that return a

single value, typically an aggregate value (e.g., COUNT, SUM, AVG) or the

result of a scalar subquery.

• It is commonly used when you expect a single result from the query, and

you want to retrieve that specific value from the database.

• The method returns an object, so you need to cast it to the appropriate

data type.

• If the query does not return any results, ExecuteScalar will return null.

iii) ExecuteReader:

• The ExecuteReader method is used to execute SQL queries that return a

set of rows (e.g., SELECT queries) and retrieve the data as a

SqlDataReader object.

MuQuestionPapers.com

• It is typically used when you need to read and process multiple rows of

data from the database.

• The SqlDataReader provides forward-only, read-only access to the data,

which makes it efficient for large result sets.

• You need to iterate through the reader to access each row of data.

These methods are fundamental in ADO.NET for performing various database

operations and retrieving data from databases in C#.

Q5. a) Write a code to save employee data as empId, empName, empDept,

and empDesignation data in XML file. (5)

Ans. Working with XML Documents in Memory

The XDocument class provides a different approach to XML data. It provides an

in-memory model of an entire XML document. You can then browse through

the entire document, reading, inserting, or removing nodes at any location.

(You can find the XDocument and all related classes in the System.Xml.Linq

namespace.)

To start building a next XML document, you need to create the XDocument,

XElement, and XAttribute objects that constitute it. All these classes have

useful constructors that allows you to create and initialize them in one step. For

example, you can create an element and supply text content that should be

placed inside using code like this.

XElement element = new XElement(“employee”,

 new XElement(“empId”, 3),

 new XElement(“cmpName”, “TS”),

 new XElement(“empDep”, “IT”),

 new XElement(“cmpDesignation”, “MANAGER”),

);

Here’s the scrap of XML that this code creates:

<employee>

 <empId>3</empId>

 <cmpName>TS</cmpName>

MuQuestionPapers.com

 <empDep>IT</empDep>

 <cmpDesignation>IT</cmpDesignation>

 </employee>

Q5. b) What is XML? List and explain the various XML classes. (5)

Ans. Extensible Markup Language (XML) stores and transports data. If we use a

XML file to store the data then we can do operations with the XML file directly

without using the database. The XML format is supported for all applications. It

is independent of all software applications and it is accessible by all

applications. It is a very widely used format for exchanging data, mainly

because it's easy readable for both humans and machines. If we have ever

written a website in HTML, XML will look very familiar to us, as it's basically a

stricter version of HTML. XML is made up of tags, attributes and values and

looks something like this:

<?xmlversion="1.0"encoding="utf-8"?>

<EmployeeInformation>

<Details>

 <Name>Richa</Name>

 <Emp_id>1</Emp_id>

 <Qualification>MCA</Qualification>

</Details>

</EmployeeInformation>

XML Classes:

ASP.NET provides a rich set of classes for XML manipulation in several

namespaces that start with System.Xml. The classes here allow us to read and

write XML files, manipulate XML data in memory, and even validate XML

documents.

The following options for dealing with XML data:

XmlTextWriter

The XmlTextWriter class allows us to write XML to a file. This class contains a

number of methods and properties that will do a lot of the work for us. To use

this class, we create a new XmlTextWriter object.

MuQuestionPapers.com

XmlTextReader

Reading the XML document in our code is just as easy with the corresponding

XmlTextReader class. The XmlTextReader moves through our document from

top to bottom, one node at a time. We call the Read() method to move to the

next node. This method returns true if there are more nodes to read or false

once it has read the final node.

XDocument

The XDocument class contains the information necessary for a valid XML

document. This includes an XML declaration, processing instructions, and

comments. The XDocument makes it easy to read and navigate XML content.

We can use the static XDocument.Load() method to read XML documents from

a file, URI, or stream.

Q5. c) What do you mean by authentication? Describe its various types of

authentication. (5)

Ans. Authentication is process of validating the identity of a user so the user

can be granted access to an application. A user must typically supply a user

name and password to be authenticated. After a user authenticated, the user

must still be authorized to use the required application. The process of granting

user access to an application is called authorization.

There are 3 types of authentication as follows:

AUTHENTICATION

Windows-based authentication:

▪ It causes the browser to display a login dialog box when the user

attempts to access restricted page.

▪ It is supported by most browsers.

Windows-Based Form- Based WINDOWS LIVE ID

MuQuestionPapers.com

▪ It is configured through the IIS management console.

▪ It uses windows user accounts and directory rights to grant access to

restricted pages.

<authentication mode =”Windows”>

<forms name=”AuthenticationDemo” loginUrl=”logon.aspx” protection=”All”

path=”/” timeout=”30” />

</authentication>

Forms-based authentication:

▪ Developer codes a login form that gets the user name and password.

▪ The username and password entered by user are encrypted if the login

page uses a secure connection.

▪ It doesn’t reply on windows user account.

<authentication mode=”Forms”>

 <forms name=”AuthenticationDemo” loginUrl =”logon.aspx”

protection=”All” path=”/” timeout=”30” />

Deny access to anonymous user in the <authorization> section as

follows:

 <authorization>

 <deny users =”?” />

</authorization>

Windows Live ID authentication:

▪ It is centralized authentication service offered by Microsoft.

▪ The advantage is that the user only has one maintain one username and

password.

Q5. d) Explain the use of UpdateProgress Control in AJAX. (5)

Ans. The UpdateProgress provides status information about partial page

updates in UpdatePanel controls. Despite the visual problems that post backs

usually cause, they have one big advantage: the user can

MuQuestionPapers.com

see something is happening. The UpdatePanel makes this a little more difficult.

Users have no visual cue that something is happening until it has happened. To

tell users to hold on for a few seconds while their request is being processed,

we can use the UpdateProgress control. We usually put text such as “Please

wait” or an animated image in this template to let the user know something is

happening, although any other markup is acceptable as well. We can connect

the UpdateProgress control to an UpdatePanel using the

AssociatedUpdatePanelID property. Its contents, defined in the

<ProgressTemplate> element, are then displayed whenever the associated

UpdatePanel is busy refreshing.

Example:

In the example below, we use the same .gif to display progress while the

UpdatePanel is updating its content. For understanding purposes, we have

emulated a time-consuming operation by setting a delay of 3 seconds by using

Thread.Sleep(3000) on the button click.

protected void btnInvoke_Click(object sender, EventArgs e)

{

System.Threading.Thread.Sleep(3000);

lblText.Text = "Processing completed";

}

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

<asp:UpdateProgress ID="updProgress"

AssociatedUpdatePanelID="UpdatePanel1"

runat="server">

<ProgressTemplate>

Processing...

</ProgressTemplate>

</asp:UpdateProgress>

 <asp:UpdatePanel ID="UpdatePanel1" runat="server">

 <ContentTemplate>

 <asp:Label ID="lblText" runat="server" Text=""></asp:Label>

 <asp:Button ID="btnInvoke" runat="server" Text="Click"

 onclick="btnInvoke_Click" />

</ContentTemplate>

 </asp:UpdatePanel>

MuQuestionPapers.com

In the code shown above, we use the AssociatedUpdatePanelID property of the

UpdateProgress control to associate it with an UpdatePanel control.

Q5. e) What is the use of timer control? Write the steps with appropriate

code to create an application to display real-time timing(clock) on an asp.net

web page. (5)

Ans. Timer controls allow us to do postbacks at certain intervals. If used

together with UpdatePanel, which is the most common approach, it allows for

timed partial updates of our page, but it can be used for posting back the entire

page as well. The Timer control uses the interval attribute to define the number

of milliseconds to occur before firing the Tick event.

<asp:Timer ID="Timer1" runat="server" Interval="2000" OnTick="Timer1_Tick">

</asp:Timer>

Example:

Here is a small example of using the Timer control. It simply updates a

timestamp every 5 seconds.

<asp:ScriptManager ID="ScriptManager1" runat="server" />

 <asp:Timer runat="server" id="UpdateTimer" interval="5000"

ontick="UpdateTimer_Tick" />

 <asp:UpdatePanel runat="server" id="TimedPanel"

updatemode="Conditional">

 <Triggers>

 <asp:AsyncPostBackTrigger controlid="UpdateTimer" eventname="Tick" />

 </Triggers>

 <ContentTemplate>

 <asp:Label runat="server" id="DateStampLabel" />

 </ContentTemplate>

</asp:UpdatePanel>

We only have a single CodeBehind function, which we should add to our

CodeBehind file:

protected void UpdateTimer_Tick(object sender, EventArgs e)

MuQuestionPapers.com

{

 DateStampLabel.Text = DateTime.Now.ToString();

 }

Q5. f) What are the benefits of using AJAX? Explain Update panel and Script

Manager. (5)

Ans. The major benefit of Ajax is partial page rendering. The partial update of

a page does not necessitate full reload of the page and hence leads to flicker-

free page rendering.

UpdatePanel

▪ We can refresh the selected part of the web page by using UpdatePanel

control, Ajax UpdatePanelcontrol contains a two child tags that is

ContentTemplate and Triggers. In a ContentTemplate tag we used to

place the user controls and the Trigger tag allows us to define certain

triggers which will make the panel update its content.

<asp:UpdatePanel ID="updatepnl" runat="server">

<ContentTemplate>

▪ All the contents that must be updated asynchronously (only

ContentTemplate parts are updated and rest of the web page part is

untouched) are placed here. It allows us to send request or post data to

server without submit the whole page so that is called asynchronous.

▪ UpdatePanel is a container control. A page can have multiple update

panels.

▪ The UpdatePanel control enables you to create a flicker free page by

providing partial-page update support to it.

▪ It identifies a set of server controls to be updated using an asynchronous

post back.

▪ If a control within the UpdatePanel causes a post back to the server, only

the content within that UpdatePanel is refreshed.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

</ContentTemplate>

</asp:UpdatePanel>

MuQuestionPapers.com

ScriptManager

▪ The ScripManager Control manages the partial page updates for

UpdatPanel controls that are on the ASP.NET web page or inside a user

control on the web page.

▪ This control manages the client script for AJAX-enabled ASP.NET web

page and ScripManager control support the feature as partial-page

rendering and web-service calls.

▪ The ScriptManager control manages client script for AJAX-enabled

ASP.NET Web pages.

▪ Although this control is not visible at runtime, it is one of the most

important controls for an Ajax

▪ enabled web page.

▪ There can be only one ScriptManager in an Ajax enabled web page.
<asp:ScriptManager ID="ScriptManager1" runat="server" />

