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Q.1 a) What is the purpose of turing test?                     (5) 

I. The Turing Test, proposed by Alan Turing (1950), was designed to provide a 

satisfactory operational definition of intelligence. To judge whether the system can act 

like a human, Sir Alan turing had designed a test known as turing test. 

II. A Turing Test is a method of inquiry in artificial intelligence (AI) for determining 

whether or not a computer is capable of thinking like a human being. 

III. A computer passes the test if a human interrogator, after posing some written 

questions, cannot tell whether the written responses come from a person or from a 

computer. Programming a computer to pass a rigorously applied test provides plenty 

to work on. The computer would need to possess the following capabilities: 

1. Natural language processing to enable it to communicate successfully in 

English; 

2. Knowledge representation to store what it knows or hears; 

3. Automated reasoning to use the stored information to answer questions and 

to draw new conclusions; 

4. Machine learning to adapt to new circumstances and to detect and extrapolate 

patterns. 

IV. Turing’s test deliberately avoided direct physical interaction between the interrogator 

and the computer, because physical simulation of a person is unnecessary for 

intelligence. However, the so-called total Turing Test includes a video signal so that 

the interrogator can test the subject’s perceptual abilities, as well as the opportunity 

for the interrogator to pass physical objects “through the hatch.” To pass the total 

Turing Test, the computer will need 

5. Computer vision to perceive objects, and 

6. Robotics to manipulate objects and move about. 

V. These six disciplines compose most of AI, and Turing deserves credit for designing a 

test that remains relevant 60 years later. Yet AI researchers have devoted little effort 

to passing the Turing Test, believing that it is more important to study the underlying 

principles of intelligence than to duplicate an exemplar.  

 

 

 

Q.1 b) What is Artificial Intelligence? Explain with example.    (5) 

 AI is one of the newest fields in science and engineering. 

 AI is a general term that implies the use of a computer to model & replicate intelligent 

behaviour. 

https://searchenterpriseai.techtarget.com/definition/AI-Artificial-Intelligence
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 “AI is the design, study & construction of computer programs that behave 

intelligently.” 

 Artificial intelligence (AI) refers to the simulation of human intelligence in machines 

that are programmed to think like humans and mimic their actions. The term may also 

be applied to any machine that exhibits traits associated with a human mind such as 

learning and problem-solving. 

 The ideal characteristic of artificial intelligence is its ability to rationalize and take 

actions that have the best chance of achieving a specific goal. 

 AI is continuously evolving to benefit many different industries. Machines are wired 

using a cross-disciplinary approach based in mathematics, computer science, 

linguistics, psychology, and more. 

 Research in AI focuses on development & analysis of algorithms that learn & perform 

intelligent behaviour with minimal human intervention. 

 AI is the ability of machine or computer program to think and learn. 

 The concept of AI is based on idea of building machines capable of thinking, acting & 

learning like humans. 

 AI is only field to attempt to build machines that will function autonomously complex 

changing environments. 

 AI has focused chiefly on following components of intelligence. 

o Learning: - the learning by trial & error. 

o Reasoning: - reasoning skill often happen subconsciously & within seconds. 

o Decision making: - it is a process of making choices by identifying a decision 

gathering information & assessing alternative resolutions. 

o Problem solving: - problem solving particularly in AI may be characterized as 

systematic search in order to reach goal or solutions. 

Examples of AI:- 

1. Alexa 

o Alexa's rise to become the smart home's hub, has been somewhat meteoric. When 

Amazon first introduced Alexa, it took much of the world by storm.  

o However, it's usefulness and its uncanny ability to decipher speech from anywhere in 

the room has made it a revolutionary product that can help us scour the web for 

information, shop, schedule appointments, set alarms and a million other things, but 

also help power our smart homes and be a conduit for those that might have limited 

mobility. 

2. Amazon.com 

o Amazon's transactional A.I. is something that's been in existence for quite some time, 

allowing it to make astronomical amounts of money online.  

https://www.investopedia.com/articles/investing/072215/investors-turn-artificial-intelligence.asp
https://www.amazon.com/
https://www.wanderlustworker.com/how-to-make-money-online-the-definitive-guide/
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o With its algorithms refined more and more with each passing year, the company has 

gotten acutely smart at predicting just what we're interested in purchasing based on 

our online behaviour.  

3. Face Detection and Recognition 

o Using virtual filters on our face when taking pictures and using face ID for unlocking 

our phones are two applications of AI that are now part of our daily lives.  

o The former incorporates face detection meaning any human face is identified. The 

latter uses face recognition through which a specific face is recognised. 

4. Chatbots 

o As a customer, getting queries answered can be time-consuming. An artificially 

intelligent solution to this is the use of algorithms to train machines to cater to 

customers via chatbots.  

o This enables machines to answer FAQs, and take and track orders. 

5. Social Media 

o The advent of social media provided a new narrative to the world with excessive 

freedom of speech.  

o Various social media applications are using the support of AI to control these 

problems and provide users with other entertaining features. 

o AI algorithms can spot and swiftly take down posts containing hate speech a lot faster 

than humans could. This is made possible through their ability to identify hate 

keywords, phrases, and symbols in different languages.  

6. E-Payments 

o Artificial intelligence has made it possible to deposit cheques from the comfort of 

your home. AI is proficient in deciphering handwriting, making online cheque 

processing practicable. 

o The way fraud can be detected by observing users’ credit card spending patterns is 

also an example of artificial intelligence. 

 

Q.1 c) Explain the concept of agent and environment.     (5) 
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 An agent is anything that can be viewed as perceiving its environment through 

sensors and acting upon that environment through actuators. 

 A human agent has eyes, ears, and other organs for sensors and hands, legs, vocal 

tract, and so on for actuators. 

 Eyes, ears, nose, skin, tongue. These senses sense the environment are called as 

sensors. Sensors collect percepts or inputs from environment and passes it to the 

processing unit. 

 Actuators or effectors are the organs or tools using which the agent acts upon the 

environment. Once the sensor senses the environment, it gives this information to 

nervous system which takes appropriate action with the help of actuators. In case of 

human agents we have hands, legs as actuators or effectors. 

 A robotic agent might have cameras and infrared range finders for sensors and various 

motors for actuators.  

 A software agent receives keystrokes, file contents, and network packets as sensory 

inputs and acts on the environment by displaying on the screen, writing files, and 

sending network packets. 

 Use the term percept to refer to the agent’s perceptual inputs at any given instant. An 

agent’s percept sequence is the complete history of everything the agent has ever 

perceived. 

 In general, an agent’s choice of action at any given instant can depend on the entire 

percept sequence observed to date, but not on anything it hasn’t perceived. 

 By specifying the agent’s choice of action for every possible percept sequence, we 

have said more or less everything there is to say about the agent. Mathematically 

speaking, we say that an agent’s behaviour is described by the agent function that 

maps any given percept sequence to an action. 
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Agents interact with environments through sensors and actuators 

Take a simple example of vacuum cleaner agent. 

Agent  Sensors  

 

 

 

 

 

   Actuators  

 

En
viro

n
m

e
n

t 

? 



MUQuestionPapers.com 
 

 

 As shown in figure, there are two blocks A & B having some dirt. Vacuum cleaner 

agent supposed to sense the dirt and collect it, thereby making the room clean. 

 In order to do that the agent must have a camera to see the dirt and a mechanism to 

move forward, backward, left and right to reach to the dirt. Also it should absorb the 

dirt. Based on the percepts, actions will be performed. For example: Move left, Move 

right, absorb, No Operation. 

 Hence the sensor for vacuum cleaner agent can be camera, dirt sensor and the actuator 

can be motor to make it move, absorption mechanism. And it can be represented as 

[A, Dirty], [B, Clean], [A, Absorb], [B, Nop], etc. 

Types of Environment 

I. Fully observable vs. partially observable:   

 If an agent’s sensors give it access to the complete state of the environment at each 

point in time, then we say that the task environment is fully observable.  

 Fully observable environments are convenient because the agent need not maintain 

any internal state to keep track of the world. An environment might be partially 

observable because of noisy and inaccurate sensors or because parts of the state are 

simply missing from the sensor data.  

 If the agent has no sensors at all then the environment is unobservable. 

II. Single agent vs. multiagent:  

 An agent solving a crossword puzzle by itself is clearly in a single-agent environment, 

while in case of car driving agent, there are multiple agents driving on the road, hence 

it’s a multiagent environment.  

 For example, in chess, the opponent entity B is trying to maximize its performance 

measure, which, by the rules of chess, minimizes agent A’s performance measure. 

Thus, chess is a competitive multiagent environment.  

 In the taxi-driving environment, on the other hand, avoiding collisions maximizes the 

performance measure of all agents, so it is a partially cooperative multiagent 

environment. It is also partially competitive because, for example, only one car can 

occupy a parking space.  

III. Deterministic vs. stochastic: 

 If the next state of the environment is completely determined by the current state and 

the action executed by the agent, then we say the environment is deterministic; 

otherwise, it is stochastic.  
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 If the environment is partially observable, however, then it could appear to be 

stochastic.  

IV. Episodic vs. sequential:  

 In an episodic task environment, the agent’s experience is divided into atomic 

episodes. In each episode the agent receives a percept and then performs a single 

action.  

 Crucially, the next episode does not depend on the actions taken in previous episodes. 

Many classification tasks are episodic.  

 In sequential environments, on the other hand, the current decision could affect all 

future decisions. 

 Episodic environments are much simpler than sequential environments because the 

agent does not need to think ahead. 

V. Static vs. dynamic:  

 If the environment can change while an agent is deliberating, then we say the 

environment is dynamic for that agent; otherwise, it is static.  

 Static environments are easy to deal with because the agent need not keep looking at 

the world while it is deciding on an action, nor need it worry about the passage of 

time.  

 Dynamic environments, on the other hand, are continuously asking the agent what it 

wants to do; if it hasn’t decided yet, that counts as deciding to do nothing.  

 If the environment itself does not change with the passage of time but the agent’s 

performance score does, then we say the environment is semi-dynamic.  

VI. Discrete vs. continuous:  

 The discrete/continuous distinction applies to the state of the environment, to the way 

time is handled, and to the percepts and actions of the agent.  

 For example, the chess environment has a finite number of distinct states (excluding 

the clock).  

 Chess also has a discrete set of percepts and actions.  

 Taxi driving is a continuous-state and continuous-time problem: the speed and 

location of the taxi and of the other vehicles sweep through a range of continuous 

values and do so smoothly over time.  

 Taxi-driving actions are also continuous (steering angles, etc.). Input from digital 

cameras is discrete, strictly speaking, but is typically treated as representing 

continuously varying intensities and locations. 

VII. Known vs. unknown: 

 In known environment, the output for all probable actions is given. state of knowledge 

about the “laws of physics” of the environment. 

 In case of unknown environment, for an agent to make a decision, it has to gain 

knowledge about how the environments works. 

 

 

Q.1 d) Give the PEAS description for taxi’s task environment.    (5) 
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PEAS stands for Performance, Environment, Actuators, and Sensors. It is the short form 

used for performance issues grouped under task environment. 

I. Performance Measure: 

First, what is the performance measure to which we would like our automated driver 

to aspire? Desirable qualities include getting to the correct destination; minimizing 

fuel consumption and wear and tear; minimizing the trip time or cost; minimizing 

violations of traffic laws and disturbances to other drivers; maximizing safety and 

passenger comfort; maximizing profits.  

II. Environment: 

Next, what is the driving environment that the taxi will face? Any taxi driver must 

deal with a variety of roads, ranging from rural lanes and urban alleys to 12-lane 

freeways. 

The roads contain other traffic, pedestrians, stray animals, road works, police cars, 

puddles, and potholes. The taxi must also interact with potential and actual 

passengers.  

III. Actuators: 

The actuators for an automated taxi include those available to a human driver: control 

over the engine through the accelerator and control over steering and braking. In 

addition, it will need output to a display screen or voice synthesizer to talk back to the 

passengers, and perhaps some way to communicate with other vehicles, politely or 

otherwise. 

IV. Sensors: 

The basic sensors for the taxi will include one or more controllable video cameras so 

that it can see the road; it might augment these with infrared or sonar sensors to detect 

distances to other cars and obstacles. To avoid speeding tickets, the taxi should have a 

speedometer, and to control the vehicle properly, especially on curves, it should have 

an accelerometer. 

PEAS description for taxi’s task environment 

 Performance measure:  

o Safe 

o Fast 

o Optimum speed 

o Legal 

o comfortable trip 

o maximize profits 

 Environment:  

o Roads 

o other traffic 

o pedestrians 

o customers   

 Actuators:  

o Steering wheel 

o Accelerator 
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o Brake 

o Signal 

o horn  

 Sensors:  

o Cameras 

o Sonar 

o Speedometer 

o GPS  

o Odometer 

o engine sensors 

o keyboard 

 

 

Q.1 e) Explain the rational agent approach of AI.      (5) 

Rational Agent:  

For each possible percept sequence, a rational agent should select an action that is expected to 

maximize its performance measure, based on the evidence provided by the percept sequence 

and whatever built-in knowledge the agent has. 

1. The concept of rational agents as central to our approach to artificial intelligence. 

2. Rationality is distinct from omniscience (all-knowing with infinite knowledge)  

3. Agents can perform actions in order to modify future percepts so as to obtain useful 

information (information gathering, exploration)  

4. An agent is autonomous if its behaviour is determined by its own percepts & experience 

(with ability to learn and adapt) without depending solely on build-in knowledge 

5. A rational agent is one that does the right thing—conceptually speaking, every entry in 

the table for the agent function is filled out correctly. Obviously, doing the right thing is 

better than doing the wrong thing, but what does it mean to do the right thing? 

6. If the sequence is desirable, then the agent has performed well. This notion of desirability 

is captured by a performance measure that evaluates any given sequence of environment 

states. 

7. For every percept sequence a built-in knowledge base is updated, which is very useful for 

decision making, because it stores the consequences of performing some particular action. 

8. If the consequences direct to achieve desired goal then we get a good performance 

measure factor, else if the consequences do not lead to desired goal sate, then we get a 

poor performance measure factor. 

For example :- if agents hurts his finger while using nail and hammer, then while using it 

for the next time agent will be more careful and the probability of not getting hurts will 

increase. In short agent will be able to use the hammer and nail more efficiently. 

9. A rational agent should be autonomous—it should learn what it can to compensate for 

partial or incorrect prior knowledge. 
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10. Rational agent not only to gather information but also to learn as much as possible from 

what it perceives. 

11. After sufficient experience of its environment, the behaviour of a rational agent can 

become effectively independent of its prior knowledge. Hence, the incorporation of 

learning allows one to design a single rational agent that will succeed in a vast variety of 

environments. 

12. What is rational at any given time depends on four things: 

 The performance measure that defines the criterion of success. 

 The agent’s prior knowledge of the environment. 

 The actions that the agent can perform. 

 The agent’s percept sequence to date. 

Acting rationally: The rational agent approach 

 An agent is just something that acts (agent comes from the Latin agere, to do). Of 

course, all computer programs do something, but computer agents are expected to do 

more: operate autonomously, perceive their environment, persist over a prolonged 

time period, and adapt to change, and create and pursue goals.  

 A rational agent is one that acts so as to achieve the best outcome or, when there is 

uncertainty, the best expected outcome. In some situations, there is no provably 

correct thing to do, but something must still be done. There are also ways of acting 

rationally that cannot be said to involve inference. For example, recoiling from a hot 

stove is a reflex action that is usually more successful than a slower action taken after 

careful deliberation. 

 All the skills needed for the Turing Test also allow an agent to act rationally. 

Knowledge representation and reasoning enable agents to reach good decisions. We 

need to be able to generate comprehensible sentences in natural language to get by in 

a complex society. We need learning not only for erudition, but also because it 

improves our ability to generate effective behaviour. 

 The rational-agent approach has two advantages over the other approaches. First, it is 

more general than the “laws of thought” approach because correct inference is just 

one of several possible mechanisms for achieving rationality. Second, it is more 

amenable to scientific development than are approaches based on human behaviour or 

human thought. The standard of rationality is mathematically well defined and 

completely general, and can be “unpacked” to generate agent designs that provably 

achieve it. 

 One important point to keep in mind: We will see before too long that achieving 

perfect rationality—always doing the right thing—is not feasible in complicated 

environments. 

 

 

Q.1 f) Explain the working of simple reflex agent.      (5) 
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I. The simplest kind of agent is the simple reflex agent. These agents select actions on 

the basis of the current percept, ignoring the rest of the percept history.  

II. A simple reflex agent is the most basic of the intelligent agents out there. It performs 

actions based on a current situation. When something happens in the environment of a 

simple reflex agent, the agent quickly scans its knowledge base for how to respond to 

the situation at-hand based on pre-determined rules. 

III. It would be like a home thermostat recognizing that if the temperature increases to 75 

degrees in the house, the thermostat is prompted to kick on. It doesn't need to know 

what happened with the temperature yesterday or what might happen tomorrow. 

Instead, it operates based on the idea that if _____ happens, _____ is the response. 

IV. Simple reflex agents are just that: simple. They cannot compute complex equations or 

solve complicated problems. They work only in environments that are fully-

observable in the current percept, ignoring any percept history. If you have a smart 

light bulb, for example, set to turn on at 6 p.m. every night, the light bulb will not 

recognize how the days are longer in summer and the lamp is not needed until much 

later. It will continue to turn the lamp on at 6 p.m. because that is the rule it follows. 

Simple reflex agents are built on the condition-action rule. 

V. Simple reflex behaviors occur even in more complex environments. Imagine yourself 

as the driver of the automated taxi. If the car in front brakes and its brake lights come 

on, then you should notice this and initiate braking. In other words, some processing 

is done on the visual input to establish the condition we call “The car in front is 

braking.” Then, this triggers some established connection in the agent program to the 

action “initiate braking.” We call such a connection a condition–action rule, written 

as  

if car-in-front-is-braking then initiate-braking. 

VI. For example, the vacuum agent is a simple reflex agent, because its decision is based 

only on the current location and on whether that location contains dirt.  

An agent program for this agent is shown in below:- 

function REFLEX-VACUUM-AGENT([location,status]) returns an action 

if status = Dirty then return Suck 

else if location = A then return Right 

else if location = B then return Left 
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Working of simple reflex agent 

 

 

Q.2 a) List and explain performance measuring ways for problem solving.  (5) 

 There are variety of problem solving methods and algorithms available in AI. The 

performance of all these algorithms can be evaluated on the basis of following factors. 

 The output of a problem-solving is either failure or a solution. We will evaluate an 

algorithm‘s performance in four ways:  

I. Completeness:  

 If the algorithm is able to produce the solution if one exists then it satisfies 

completeness criteria.  

II. Optimality:  

 If more than one way exists to derive the solution then the best one is 

selected.  

 Does the strategy find the optimal solution? 

 If the solution produced is the minimum cost solution, the algorithm is said to 

be optimal. 

III. Time complexity:  

 Time taken to run a solution.  

 How long does it take to find a solution? 

 It depends on the time taken to generate the solution. It is number of nodes 

generated during the search. 

IV. Space complexity:  
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 Memory needed to perform the search.  

 How much memory is needed to perform the search? 

 Memory required to store the generated nodes while performing the search. 

 

 Time and space complexity are always considered with respect to some measure of 

the problem difficulty. In theoretical computer science, the typical measure is the size 

of the state space graph, |V | + |E|,  

o where V is the set of vertices (nodes) of the graph and  

o E is the set of edges (links).  

This is appropriate when the graph is an explicit data structure that is input to the 

search program. (The map of Romania is an example of this.)  

 In AI, the graph is often represented implicitly by the initial state, actions, and 

transition model and is frequently infinite. For these reasons, complexity is expressed 

in terms of three quantities:  

o b, the branching factor or maximum number of successors of any node;  

o d, the depth of the shallowest goal DEPTH node (i.e., the number of 

steps along the path from the root); and  

o m, the maximum length of any path in the state space. Time is often 

measured in terms of the number of nodes generated during the search, 

and space in terms of the maximum number of nodes stored in 

memory. 

 For the most part, we describe time and space complexity for search on a tree; for a 

graph, the answer depends on how “redundant” the paths in the state space are. 

SEARCH COST To assess the effectiveness of a search algorithm, we can consider 

just the search cost— which typically depends on the time complexity but can also 

include a term for memory TOTAL COST usage—or we can use the total cost, which 

combines the search cost and the path cost of the solution found.  

 For the problem of finding a route from Arad to Bucharest, the search cost is the 

amount of time taken by the search and the solution cost is the total length of the path 

in kilometers.  

Thus, to compute the total cost, we have to add milliseconds and kilometers. 

 There is no “official exchange rate” between the two, but it might be reasonable in 

this case to convert kilometers into milliseconds by using an estimate of the car’s 

average speed (because time is what the agent cares about). This enables the agent to 

find an optimal trade-off point at which further computation to find a shorter path 

becomes counterproductive. 

 

 

 

Q.2 b) Formulate the vacuum world problem.      (5) 

Consider a Vacuum cleaner world 
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Imagine that our intelligent agent is a robot vacuum cleaner. 

Let’s suppose that the world has just two rooms. The robot can be in either room and there 

can be dirt in zero, one or two rooms. 

1. States: - 

In vacuum cleaner problem, state can be represented as [<block>, clean] or [<block>, 

dirty]. Hence there are total 8 states in the vacuum cleaner world. 

2. Initial state: - 

Any state can be considered as initial state. For example, [A, dirty] 

3. Actions: - 

The possible actions for the vacuum cleaner machine are left, right, absorb, and idle. 

4. Successor function: -  

In fig indicating all possible states with actions and the next state. 

5. Goal state:- 

The aim of the vacuum cleaner is to clean both the blocks. Hence the goal test if [A, 

Clean] and [B, Clean]. 

6. Path Cost:- 

Assuming that each action/ step costs 1 unit cost. The path cost is number of actions/ 

steps taken. 

 

 

The state space for vacuum world 

 Fully observable: - 

 Search in belief state space, where the problem is fully observable! 

Solution is a sequence, even if the environment is non-deterministic! 

Suppose the underlying problem (P) is 

https://1.bp.blogspot.com/-eKv3yq93ZyE/VsVcMn-QrGI/AAAAAAAAAFs/6nJZ0lCEcg4/s1600/va1.png
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{Actionsp, Resultp,  Goal − Testp,  Step − Costp} 

 What is the corresponding sensor-less problem 

States  Belief States: every possible set of physical states 

If N physical states, number of belief states can be 2N 

Initial State: Typically the set of all states in P 

 Actions: Consider {s1, s2} 

 If Actionsp(s1) != Actionsp(s2) should we take the Union of both sets of actions or 

the Intersection? 

 Union if all actions are legal, intersection if not 

 If the environment is completely observable, the vacuum cleaner always knows where 

it is and where the dirt is. The solution then is reduced to searching for a path from the 

initial state to the goal state. 

 States for the search: The world states 1-8. 

 If the vacuum cleaner has no sensors, it doesn’t know where it or the dirt is. In spite of 

this, it can still solve the problem. Here, states are knowledge states. States for the 

search: The power set of the world states 1-8. 

 Non-deterministic in action: - 

 Slippery vacuum world 

 If at first you don’t succeed try, try again 

 We need to add label to some portion of a plan and use the label to refer to that 

portion – rather than repeating the sub plan  And-Or graphs with labels 

 Plan: [Suck, L1: Right, if State == 5 then L1 else Suck] 

 And-Or solution: - 

 Given this problem formulation, we can use the And-Or search algorithm to come up 

with a plan to solve the problem 

 Given [A, Dirty], Plan = {Suck, Right, if Bstate = {6} then Suck else []} 

 

And-Or solution 
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 Partially observable environments 

I. An agent in a partially observable environment must update belief state from percept 

o b’ = Update(Predict(b, a), o) 

o So the agent is only looking at the current o (percept) not the entire history, as 

we considered earlier. This is recursive state estimation 

o Example: Kindergarten vacuum world 

 

Partially Observable Environments 

 

 

 

Q.2 c) Write the uniform cost search algorithm. Explain in short.   (5) 

II. Uniform Cost Search is an algorithm used to move around a directed weighted search 

space to go from a start node to one of the ending nodes with a minimum cumulative 

cost. 

III. This search is an uninformed search algorithm, since it operates in a brute-force 

manner i.e. it does not take the state of the node or search space into consideration.  

IV. It is used to find the path with the lowest cumulative cost in a weighted graph where 

nodes are expanded according to their cost of traversal from the root node. This is 

implemented using a priority queue where lower the cost higher is its priority. 

V. When all step costs are equal, breadth-first search is optimal because it always 

expands the shallowest unexpanded node. By a simple extension, we can find an 

algorithm that is optimal with any step-cost function. Instead of expanding the 

shallowest node, uniform-cost search expands the node n with the lowest path cost g 

(n). This is done by storing the frontier as a priority queue ordered by g. 

VI. In addition to the ordering of the queue by path cost, there are two other significant 

differences from breadth-first search. The first is that the goal test is applied to a node 

when it is selected for expansion. Rather than when it is first generated. The reason is 

that the first goal node that is generated may be on a suboptimal path. The second 

difference is that a test is added in case a better path is found to a node currently on 

the frontier. 

VII. Algorithm 

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure 

   node ←a node with STATE = problem.INITIAL-STATE, PATH-COST = 0 
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   frontier ←a priority queue ordered by PATH-COST, with node as the only element   

   explored ←an empty set 

   loop do 

 if EMPTY?( frontier) then return failure 

 node←POP( frontier ) /* chooses the lowest-cost node in frontier */ 

 if problem.GOAL-TEST(node.STATE) then return SOLUTION(node) 

 add node.STATE to explored 

 for each action in problem.ACTIONS(node.STATE) do 

  child ←CHILD-NODE(problem, node, action) 

  if child .STATE is not in explored or frontier then 

   frontier ←INSERT(child , frontier ) 

  else if child .STATE is in frontier with higher PATH-COST then 

   replace that frontier node with child 

 

 

Part of the Romania state space, selected to illustrate uniform-cost search. 

VIII. The problem is to get from Sibiu to Bucharest. The successors of Sibiu are Rimnicu 

Vilcea and Fagaras, with costs 80 and 99, respectively. The least-cost node, Rimnicu 

Vilcea, is expanded next, adding Pitesti with cost 80 + 97=177.  

IX. The least-cost node is now Fagaras, so it is expanded, adding Bucharest with cost 

99+211=310. Now a goal node has been generated, but uniform-cost search keeps 

going, choosing Pitesti for expansion and adding a second path to Bucharest with cost 

80+97+101= 278. Now the algorithm checks to see if this new path is better than the 

old one; it is, so the old one is discarded. Bucharest, now with g-cost 278, is selected 

for expansion and the solution is returned. 

X. It is easy to see that uniform-cost search is optimal in general. Uniform-cost search 

does not care about the number of steps a path has, but only about their total cost. 

Uniform-cost search is guided by path costs rather than depths, so its complexity is 

not easily characterized in terms of b and d. 
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Q.2 d) With suitable diagram explain the following concepts.    (5) 

 i. shoulder   ii. Global maximum   iii. Local maximum 

i. Shoulder 

 

 A plateau is a flat area of the state-space landscape. It can be a flat local maximum, 

from which no uphill exit exists, or a shoulder, from which progress is possible. A 

hill-climbing search might get lost on the plateau. 

  It is a region having an edge upwards and it is also considered as one of the problems 

in hill climbing algorithms. 

 The algorithm in Figure halts if it reaches a plateau where the best successor has the 

same value as the current state. Might it not be a good idea to keep going—to allow a 

sideways move in the hope that the plateau is really a shoulder, as shown in Figure? 

The answer is usually yes, but we must take care.  

 If we always allow sideways moves when there are no uphill moves, an infinite loop 

will occur whenever the algorithm reaches a flat local maximum that is not a 

shoulder. 

ii. Global maximum 

 

 It is the highest state of the state space and has the highest value of cost function. 
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 It is a plateau that has an uphill edge. 

 If elevation corresponds to an objective function, then the aim is to find the 

highest peak—a global maximum. (You can convert from one to the other just by 

inserting a minus sign.) Local search algorithms explore this landscape. A 

complete local search algorithm always finds a goal if one exists; an optimal 

algorithm always finds a global minimum/maximum.It is the best possible state in 

the state space diagram. This because at this state, objective function has highest 

value. 

 

iii. Local maximum 

 

 As visible from the diagram, it is the state which is slightly better than the 

neighbour states but it is always lower than the highest state. 

 A local maximum is a peak that is higher than each of its neighbouring states but 

lower than the global maximum. Hill-climbing algorithms that reach the vicinity 

of a local maximum will be drawn upward toward the peak but will then be stuck 

with nowhere else to go. 

 It is a state which is better than its neighbouring state however there exists a state 

which is better than it (global maximum). This state is better because here the 

value of the objective function is higher than its neighbours. 

 At a local maximum all neighbouring states have a values which is worse than the 

current state. Since hill-climbing uses a greedy approach, it will not move to the 

worse state and terminate itself. The process will end even though a better solution 

may exist. 

 

 

Q.2 e) How genetic algorithm works?       (5) 

I. A genetic algorithm (or GA) is a variant of stochastic beam search in which 

successor states are generated by combining two parent states rather than by 

modifying a single state. The analogy to natural selection is the same as in stochastic 
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beam search, except that now we are dealing with sexual rather than asexual 

reproduction. 

II. Like beam searches, GAs begin with a set of k randomly generated states, called the 

population. Each state, or individual, is represented as a string over a finite alphabet—

most commonly, a string of 0s and 1s.  

III. For example, an 8-queens state must specify the positions of 8 queens, each in a 

column of 8 squares, and so requires 8× log2 8=24 bits. Alternatively, the state could 

be represented as 8 digits, each in the range from 1 to 8. (We demonstrate later that 

the two encodings behave differently.) Figure shows a population of four 8-digit 

strings representing 8-queens states. 

 

 

The genetic algorithm, illustrated for digit strings representing 8-queens states. The 

initial population in (a) is ranked by the fitness function in (b), resulting in pairs 

formating in (c). They produce offspring in (d), which are subject to mutation in (e). 

IV. The following outline how the genetic algorithm works: 

1. The algorithm begins by creating a random initial population. 

2. The algorithm then creates a sequence of new populations. At each step, the algorithm 

uses the individuals in the current generation to create the next population. To create 

the new population, the algorithm performs the following steps: 

a. Scores each member of the current population by computing its fitness value. 

These values are called the raw fitness scores. 

b. Scales the raw fitness scores to convert them into a more usable range of 

values. These scaled values are called expectation values. 

c. Selects members, called parents, based on their expectation. 

d. Some of the individuals in the current population that have lower fitness are 

chosen as elite. These elite individuals are passed to the next population. 

e. Produces children from the parents. Children are produced either by making 

random changes to a single parent—mutation—or by combining the vector 

entries of a pair of parents—crossover. 

f. Replaces the current population with the children to form the next generation. 
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3. The algorithm stops when one of the stopping criteria is met.  

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual 

 inputs: population, a set of individuals 

  FITNESS-FN, a function that measures the fitness of an individual 

 repeat 

  new population ←empty set 

  for i = 1 to SIZE(population) do 

   x ←RANDOM-SELECTION(population, FITNESS-FN) 

   y ←RANDOM-SELECTION(population, FITNESS-FN) 

   child ←REPRODUCE(x , y) 

   if (small random probability) then child ←MUTATE(child ) 

   add child to new population 

  population ←new population 

 until some individual is fit enough, or enough time has elapsed 

 return the best individual in population, according to FITNESS-FN 

 

function REPRODUCE(x , y) returns an individual 

 inputs: x , y, parent individuals 

  

 n←LENGTH(x ); c←random number from 1 to n 

 return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n)) 

A genetic algorithm. The algorithm is the same as the one diagrammed in Figure, with 

one variation: in this more popular version, each mating of two parents produces only 

one offspring, not two. 

V. Initial Population:- The algorithm begins by creating a random initial population,  

VI. Creating the Next Generation:- 

The genetic algorithm creates three types of children for the next generation: 

 Eliteare the individuals in the current generation with the best fitness values. These 

individuals automatically survive to the next generation. 

 Crossover are created by combining the vectors of a pair of parents. 

 Mutation children are created by introducing random changes, or mutations, to a 

single parent. 
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o Crossover Children 

The algorithm creates crossover children by combining pairs of parents in the 

current population. At each coordinate of the child vector, the default 

crossover function randomly selects an entry, or gene, at the same coordinate 

from one of the two parents and assigns it to the child. For problems with 

linear constraints, the default crossover function creates the child as a random 

weighted average of the parents. 

o Mutation Children 

The algorithm creates mutation children by randomly changing the genes of 

individual parents. By default, for unconstrained problems the algorithm adds 

a random vector from a Gaussian distribution to the parent. For bounded or 

linearly constrained problems, the child remains feasible. 

VII. Plots of Later Generations 

VIII. Stopping Conditions for the Algorithm 

The genetic algorithm uses the following options to determine when to stop. See the 

default values for each option by running opts = optimoptions('ga'). 

 MaxGenerations — The algorithm stops when the number of generations 

reaches MaxGenerations. 

 MaxTime — The algorithm stops after running for an amount of time in seconds 

equal to MaxTime. 

 

 

Q.2 f) Explain the working of AND-OR search tree.     (5) 

I. An and–or tree is a graphical representation of the reduction of problems (or goals) 

to conjunctions and disjunctions of sub problems (or sub goals). 

II. In a deterministic environment, the only branching is introduced by the agent’s own 

choices in each state. We call these nodes OR nodes. In the vacuum world, for 

example, at an OR node the agent chooses Left or Right or Suck. In a 

nondeterministic environment, branching is also introduced by the environment’s 

choice of outcome for each action. We call these nodes AND nodes. 

III. For example, the Suck action in state 1 leads to a state in the set {5, 7}, so the agent 

would need to find a plan for state 5 and for state 7. These two kinds of nodes 

alternate, leading to an AND–OR tree as illustrated in Figure 

IV. A solution for an AND–OR search problem is a sub tree that (1) has a goal node at 

every leaf, (2) specifies one action at each of its OR nodes, and (3) includes every 

outcome branch at each of its AND nodes. 

https://en.wikipedia.org/wiki/Graphical_representation
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Disjunction
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V. The solution is shown in bold lines in the figure; it corresponds to the plan given in 

Equation (The plan uses if–then–else notation to handle the AND branches, but when 

there are more than two branches at a node, it might be better to use a case construct.) 

Modifying the basic problem-solving agent to execute contingent solutions of this kind 

is straightforward. One may also consider a somewhat different agent design, in which 

the agent can act before it has found a guaranteed plan and deals with some 

contingencies only as they arise during execution. 

VI. One key aspect of the algorithm is the way in which it deals with cycles, which often 

arise in nondeterministic problems (e.g., if an action sometimes has no effect or if an 

unintended effect can be corrected). If the current state is identical to a state on the 

path from the root, then it returns with failure. This doesn’t mean that there is no 

solution from the current state; it simply means that if there is a noncyclic solution, it 

must be reachable from the earlier incarnation of the current state, so the new 

incarnation can be discarded.  

VII. With this check, we ensure that the algorithm terminates in every finite state space, 

because every path must reach a goal, a dead end, or a repeated state. Notice that the 

algorithm does not check whether the current state is a repetition of a state on some 

other path from the root, which is important for efficiency.  

VIII. AND–OR graphs can also be explored by breadth-first or best-first methods.

 

AND-OR search tree 
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Q.3 a) List and explain the elements used to define the game formally.   (5) 

I. Games have engaged the intellectual faculties of humans—sometimes to an alarming 

degree—for as long as civilization has existed. For AI researchers, the abstract nature of 

games makes them an appealing subject for study. The state of a game is easy to 

represent, and agents are usually restricted to a small number of actions whose outcomes 

are defined by precise rules. 

II. We first consider games with two players, whom we call MAX and MIN for reasons that 

will soon become obvious. MAX moves first, and then they take turns moving until the 

game is over. At the end of the game, points are awarded to the winning player and 

penalties are given to the loser. 

III. A game can be formally defined as a kind of search problem with the following elements: 

1. S0: The initial state, which specifies how the game is set up at the start. 

2. PLAYER(s): Defines which player has the move in a state. 

3. ACTIONS(s): Returns the set of legal moves in a state. 

4. RESULT(s, a): The transition model, which defines the result of a move. 

5. TERMINAL-TEST(s): A terminal test, which is true when the game is over and 

false otherwise. States where the game has ended are called terminal states. 

6. UTILITY(s, p): A utility function (also called an objective function or payoff 

function), defines the final numeric value for a game that ends in terminal state s for a 

player p. In chess, the outcome is a win, loss, or draw, with values +1, 0, or 1/2. Some 

games have a wider variety of possible outcomes; the payoffs in backgammon range 

from 0 to +192. A zero-sum game is (confusingly) defined as one where the total 

payoff to all players is the same for every instance of the game. Chess is zero-sum 

because every game has payoff of either 0 + 1, 1 + 0 or 1/2+ 1/2. “Constant-sum” 

would have been a better term, but zero-sum is traditional and makes sense if you 

imagine each player is charged an entry fee of 1/2. 

 

 

Q.3 b) Write the minimax algorithm. Explain in short.      (5) 

I. Minimax is a kind of backtracking algorithm that is used in decision making and 

game theory to find the optimal move for a player, assuming that your opponent also 

plays optimally. It is widely used in two player turn-based games such as Tic-Tac-

Toe, Backgammon, Mancala, Chess, etc. 

II. In Minimax the two players are called maximizer and minimizer. 

The maximizer tries to get the highest score possible while the minimizer tries to do 

the opposite and get the lowest score possible. 

III. It uses a simple recursive computation of the minimax values of each successor state, 

directly implementing the defining equations. The recursion proceeds all the way 

down to the leaves of the tree, and then the minimax values are backed up through 

the tree as the recursion unwinds. 

https://www.geeksforgeeks.org/tag/backtracking/
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IV. The minimax algorithm performs a complete depth-first exploration of the game tree. 

If the maximum depth of the tree is m and there are b legal moves at each point, then 

the time complexity of the minimax algorithm is O (bm).  

V. The space complexity is O (bm) for an algorithm that generates all actions at once, or 

O (m) for an algorithm that generates actions one at a time. For real games, of course, 

the time cost is totally impractical, but this algorithm serves as the basis for the 

mathematical analysis of games and for more practical algorithms. 

Working of Min-Max Algorithm: 

 The working of the minimax algorithm can be easily described using an example. 

Below we have taken an example of game-tree which is representing the two-

player game. 

 In this example, there are two players one is called Maximizer and other is called 

Minimizer. 

 Maximizer will try to get the Maximum possible score, and Minimizer will try to 

get the minimum possible score. 

 This algorithm applies DFS, so in this game-tree, we have to go all the way 

through the leaves to reach the terminal nodes. 

 At the terminal node, the terminal values are given so we will compare those 

value and backtrack the tree until the initial state occurs. Following are the main 

steps involved in solving the two-player game tree: 

 First, we need to replace the single value for each node with a vector of values. 

For example, in a three-player game with players A, B, and C, a vector (vA, vB, 

vC) is associated with each node. For terminal states, this vector gives the utility 

of the state from each player’s viewpoint. (In two-player, zero-sum games, the 

two-element vector can be reduced to a single value because the values are always 

opposite.)  

 The simplest way to implement this is to have the UTILITY function return a 

vector of utilities. Now we have to consider nonterminal states.  

 Consider the node marked X in the game tree shown in Figure. In that state, player 

C chooses what to do. The two choices lead to terminal states with utility vectors 

(vA =1, vB =2, vC =6) and (vA =4, vB =2, vC =3). Since 6 is bigger than 3, C 

should choose the first move. This means that if state X is reached, subsequent 

play will lead to a terminal state with utilities (vA =1, vB =2, vC =6). Hence, the 

backed-up value of X is this vector. The backed-up value of a node n is always the 

utility vector of the successor state with the highest value for the player choosing 

at n.  

 Anyone who plays multiplayer games, such as Diplomacy, quickly becomes 

aware that much more is going on than in two-player games. Multiplayer games 

usually involve alliances, whether formal or informal, among the players. 

Alliances are made and broken as the game proceeds. Strategies for each player in 



MUQuestionPapers.com 
 

a multiplayer game? It turns out that they can be. For example, suppose A and B 

are in weak positions and C is in a stronger position. Then it is often optimal for 

both A and B to attack C rather than each other, lest C destroy each of them 

individually. In this way, collaboration emerges from purely selfish behaviour. 

 If the game is not zero-sum, then collaboration can also occur with just two 

players. Suppose, for example, that there is a terminal state with utilities _vA 

=1000, vB =1000_ and that 1000 is the highest possible utility for each player. 

Then the optimal strategy is for both players to do everything possible to reach 

this state—that is, the players will automatically cooperate to achieve a mutually 

desirable goal. 

 

 

The first three plies of a game tree with three players (A, B, C). Each node is labelled with 

values from the viewpoint of each player. The best move is marked at the root. 

 

 

Q.3 c) Explain alpha-beta pruning with suitable example.    (5) 

I. Alpha-beta pruning is a modified version of the minimax algorithm. It is an 

optimization technique for the minimax algorithm. 

II. As we have seen in the minimax search algorithm that the number of game states it 

has to examine are exponential in depth of the tree. Since we cannot eliminate the 

exponent, but we can cut it to half. Hence there is a technique by which without 

checking each node of the game tree we can compute the correct minimax decision, 

and this technique is called pruning. This involves two threshold parameter Alpha 

and beta for future expansion, so it is called alpha-beta pruning. It is also called 

as Alpha-Beta Algorithm. 

III. Alpha-beta pruning can be applied at any depth of a tree, and sometimes it not only 

prune the tree leaves but also entire sub-tree. 

IV. The two-parameter can be defined as: 
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a. Alpha: The best (highest-value) choice we have found so far at any point 

along the path of Maximizer. The initial value of alpha is -∞. 

b. Beta: The best (lowest-value) choice we have found so far at any point along 

the path of Minimizer. The initial value of beta is +∞. 

VI. The Alpha-beta pruning to a standard minimax algorithm returns the same move as 

the standard algorithm does, but it removes all the nodes which are not really 

affecting the final decision but making algorithm slow. Hence by pruning these nodes, 

it makes the algorithm fast. 

VII. When applied to a standard minimax tree, it returns the same move as minimax 

would, but prunes away branches that cannot possibly influence the final decision. 

VIII. Alpha–beta pruning can be applied to trees of any depth, and it is often possible to 

prune entire subtrees rather than just leaves. 

 Example of alpha beta pruning 

 We will first start with the initial move. We will initially define the alpha and beta 

values as the worst case i.e. α = -∞ and β= +∞. We will prune the node only when 

alpha becomes greater than or equal to beta. 

 

 Since the initial value of alpha is less than beta so we didn’t prune it. Now it’s turn for 

MAX. So, at node D, value of alpha will be calculated. The value of alpha at node D 

will be max (2, 3). So, value of alpha at node D will be 3. 

 Now the next move will be on node B and its turn for MIN now. So, at node B, the 

value of alpha beta will be min (3, ∞). So, at node B values will be alpha= – ∞ and 

beta will be 3 
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 In the next step, algorithms traverse the next successor of Node B which is node E, 

and the values of α= -∞, and β= 3 will also be passed. 

 Now it’s turn for MAX. So, at node E we will look for MAX. The current value of 

alpha at E is – ∞ and it will be compared with 5. So, MAX (- ∞, 5) will be 5. So, at 

node E, alpha = 5, Beta = 5. Now as we can see that alpha is greater than beta which 

is satisfying the pruning condition so we can prune the right successor of node E and 

algorithm will not be traversed and the value at node E will be 5.

 

 In the next step the algorithm again comes to node A from node B. At node A alpha 

will be changed to maximum value as MAX (- ∞, 3). So now the value of alpha and 

beta at node A will be (3, + ∞) respectively and will be transferred to node C. These 

same values will be transferred to node F. 

 At node F the value of alpha will be compared to the left branch which is 0. So, MAX 

(0, 3) will be 3 and then compared with the right child which is 1, and MAX (3,1) = 3 
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still α remains 3, but the node value of F will become 1.

 

 Now node F will return the node value 1 to C and will compare to beta value at C. 

Now its turn for MIN. So, MIN (+ ∞, 1) will be 1. Now at node C, α= 3, and β= 1 and 

alpha is greater than beta which again satisfies the pruning condition. So, the next 

successor of node C i.e. G will be pruned and the algorithm didn’t compute the entire 

subtree G. 

 

 Now, C will return the node value to A and the best value of A will be MAX (1, 3) 

will be 3. 
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 The above represented tree is the final tree which is showing the nodes which are 

computed and the nodes which are not computed. So, for this example the optimal 

value of the maximizer will be 3. 

 

Q.3 d) Write the connectives used to form complex sentence of propositional logic.  

Give Example of each.         (5) 

Complex sentences are constructed from simpler sentences, using parentheses and logical 

connectives. There are five connectives in common use: 

1) ¬ (not):- 

A sentence such as ¬W1, 3 is called the negation of W1, 3. A literal is either an 

atomic sentence (a positive literal) or a negated atomic sentence (a negative literal). 

Example: - ¬A 

 

2) ∧ (and):- 

A sentence whose main connective is ∧, such as W1, 3 ∧ P3, 1, is called a 

conjunction; its parts are the conjuncts. (The ∧ looks like an “A” for “And.”) 

Example: - A∧B 

 

3) ∨ (or):- 

A sentence using ∨, such as (W1, 3∧P3, 1) ∨W2, 2, is a disjunction of the disjuncts 

(W1, 3 ∧ P3, 1) and W2, 2. (Historically, the ∨ comes from the Latin “vel,” which 

means “or.” For most people, it is easier to remember ∨ as an upside-down ∧.) 

Example: - A∨B 

 

4) ⇒ (implies):- 

A sentence such as (W1, 3∧P3, 1) ⇒ ¬W2, 2 is called an implication (or conditional). 

Its premise or antecedent is (W1, 3 ∧P3, 1), and its conclusion or consequent is ¬W2, 

2. Implications are also known as rules or if–then statements. The implication RULES 

symbol is sometimes written as ⊃ or →. 
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Example: - A⇒B 

 

5) ⇔ (if and only if):- 

The sentence W1, 3 ⇔ ￢W2, 2 is a biconditional. In other way write this as ≡. 

Example:- A⇔B 

 

A B A∧B A∨B ¬A A⇒B A⇔B 

False False F F T T T 

False True F T T T F 

True False F T F F F 

True True T T F T T 

 

 

 

Q.3 e) Explain the concept of knowledge base with example.    (5) 

I. Knowledge is the basic element for a human brain to know and understand the things 

logically. When a person becomes knowledgeable about something, he is able to do 

that thing in a better way. In AI, the agents which copy such an element of human 

beings are known as knowledge-based agents. 

II. The central component of a knowledge-based agent is its knowledge base, or KB. A 

knowledge base is a set of sentences. (Here “sentence” is used as a technical term. It 

is related but not identical to the sentences of English and other natural languages.) 

Each sentence is expressed in a language called a knowledge representation 

language and represents some assertion about the world. Sometimes we dignify a 

sentence with the name axiom, when the sentence is taken as given without being 

derived from other sentences. 

III. There must be a way to add new sentences to the knowledge base and a way to query 

what is known. The standard names for these operations are TELL and ASK, 

respectively. 

IV. Both operations may involve inference—that is, deriving new sentences from old. 

Inference must obey the requirement that when one ASKs a question of the 

knowledge base, the answer should follow from what has been told (or TELLed) to 

the knowledge base previously. Later in this chapter, we will be more precise about 

the crucial word “follow.” For now, take it to mean that the inference process should 

not make things up as it goes along. 

V. The agent maintains a knowledge base, KB, which may initially contain some 

background knowledge. 

VI. Each time the agent program is called, it does three things. First, it TELLs the 

knowledge base what it perceives. Second, it ASKs the knowledge base what action it 

should perform. In the process of answering this query, extensive reasoning may be 

done about the current state of the world, about the outcomes of possible action 
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sequences, and so on. Third, the agent program TELLs the knowledge base which 

action was chosen, and the agent executes the action. 

VII. Knowledge level: - where we need specify only what the agent knows and what its 

goals are, in order to fix its behaviour. For example, an automated taxi might have the 

goal of taking a passenger from San Francisco to Marin County and might know that 

the Golden Gate Bridge is the only link between the two locations. Then we can 

expect it to cross the Golden Gate Bridge because it knows that that will achieve its 

goal. 

VIII. Implementation level: - Notice that this analysis is independent of how the taxi 

works at the implementation level. It doesn’t matter whether its geographical 

knowledge is implemented as linked lists or pixel maps, or whether it reasons by 

manipulating strings of symbols stored in registers or by propagating noisy signals in 

a network of neurons. 

IX. Example of knowledge-based agents is wumpus world. 

X. The Wumpus world is a simple world example to illustrate the worth of a knowledge-

based agent and to represent knowledge representation. It was inspired by a video 

game Hunt the Wumpus by Gregory Yob in 1973. 

XI. The Wumpus world is a cave which has 4/4 rooms connected with passageways. So 

there are total 16 rooms which are connected with each other. We have a knowledge-

based agent who will go forward in this world. The cave has a room with a beast which 

is called Wumpus, who eats anyone who enters the room. The Wumpus can be shot by 

the agent, but the agent has a single arrow. In the Wumpus world, there are some Pits 

rooms which are bottomless, and if agent falls in Pits, then he will be stuck there 

forever. The exciting thing with this cave is that in one room there is a possibility of 

finding a heap of gold. So the agent goal is to find the gold and climb out the cave 

without fallen into Pits or eaten by Wumpus. The agent will get a reward if he comes 

out with gold, and he will get a penalty if eaten by Wumpus or falls in the pit. 

 

 

Q.3 f) Write a short note on propositional theorem proving.    (5) 

 Reasoning by theorem proving is a weak method, compared to experts systems, 

because it does not make use of domain knowledge. This, on the other hand, may be a 

strength, if no domain heuristics are available (reasoning from first principles). 

Theorem proving is usually limited to sound reasoning. 

 proving theorems is considered to require high intelligence 

 if knowledge is represented by logic, theorem proving is reasoning 

 theorem proving uses AI techniques, such as (heuristic) search 

 (Study how people prove theorems. Differently!)  

Theorem proving requires 
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o a logic (syntax) 

o a set of axioms and inference rules 

o a strategy on when how to search through the possible applications of the axioms and 

rules 

 

I. Entailment can be done by theorem proving—applying rules of inference directly to 

the sentences in our knowledge base to construct a proof of the desired sentence 

without consulting models. If the number of models is large but the length of the 

proof is short, then theorem proving can be more efficient than model checking. 

II. We will need some additional concepts related to entailment. The first concept is 

logical equivalence: two sentences α and β are logically equivalent if they are true in 

the same set of models. We write this as α ≡ β. For example, we can easily show 

(using truth tables) that P ∧ Q and Q ∧ Pare logically equivalent. These equivalences 

play much the same role in logic as arithmetic identities do in ordinary mathematics. 

An alternative definition of equivalence is as follows: any two sentences α and β are 

equivalent only if each of them entails the other: 

α ≡ β if and only if α |= β and β |= α . 

III. The second concept we will need is validity. A sentence is valid if it is true in all 

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as 

tautologies. They are necessarily true. Because the sentence True is true in all models, 

every valid sentence is logically equivalent to True. What good are valid sentences? 

From our definition of entailment, we can derive the deduction theorem, which was 

known to the ancient Greeks: For any sentences α and β, α |= β if and only if the 

sentence (α ⇒β) is valid. 

IV. The final concept we will need is satisfiability.  A sentence is satisfiable if it is true 

in, or satisfied by, some model. For example, the knowledge base given earlier, (R1 ∧ 

R2 ∧R3 ∧ R4 ∧ R5), is satisfiable because there are three models in which it is true. 

Satisfiability can be checked by enumerating the possible models until one is found 

that satisfies the sentence. The problem of determining the satisfiability of sentences 

in propositional logic—the SAT problem—was the first problem proved to be NP-

complete. Many problems in computer science are really satisfiability problems. 

V. Validity and satisfiability are of course connected: α is valid if ￢α is unsatisfiable; 

contrapositively, α is satisfiable if ￢α is not valid. 

VI. α |= β if and only if the sentence (α ∧ ￢β) is unsatisfiable 

Proving β from α by checking the unsatisfiability of (α ∧ ￢β) corresponds exactly to 

the standard mathematical proof technique of reductio ad absurdum (literally, 

“reduction to an absurd thing”). It is also called proof by refutation or proof by 

contradiction. One assumes a sentence β to be false and shows that this leads to a 

contradiction with known axioms α. This contradiction is exactly what is meant by 

saying that the sentence (α ∧ ￢β) is unsatisfiable. 
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Q.4 a) Explain the following with example       (5)

 i. Atomic sentence   ii. Complex sentence 

 

A model containing five objects, two binary relations, three unary relations (indicated 

by labels on the objects), and one unary function, left-leg. 

1. Atomic sentence 

 An atomic sentence (or atom for short) is formed from a predicate symbol 

optionally followed by a parenthesized list of terms, such as Brother (Richard, 

John). 

 This states, under the intended interpretation given earlier, that Richard the 

Lionheart is the brother of King John. Atomic sentences can have complex 

terms as arguments. Thus, Married (Father (Richard), Mother (John)) states 

that Richard the Lionheart’s father is married to King John’s mother (again, 

under a suitable interpretation). 

 An atomic sentence is true in a given model if the relation referred to by the 

predicate symbol holds among the objects referred to by the arguments. 

 Atomic Sentence =    predicate (term 1,....., term n) or term1 = term2 

 An atomic sentence is formed from a predicate symbol followed by list of 

terms. 

 Examples:- 

o LargeThan(2,3) is false. 

o Brother_of(Mary,Pete) is false. 

o Married(Father(Richard),Mother(John)) could be true or false. 

 

2. Complex sentence 
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 We can use logical connectives to construct more complex sentences, with the 

same syntax and semantics as in propositional calculus.   

 Here are four sentences that are true in the model of Figure under our intended 

interpretation: 

o ￢Brother (LeftLeg(Richard), John) 

o Brother (Richard , John) ∧ Brother (John,Richard) 

o King(Richard ) ∨ King(John) 

o ￢King(Richard) ⇒ King(John) . 

 

 

Q.4 b) Explain universal Quantifier with example.     (5) 

 A logical quantifier that asserts all values of a given variable in a formula. 

 First-order logic contains two standard quantifiers, called universal and existential.  

 

1. Universal quantifier 

 The symbol ∀ is called the universal quantifier. 

 It expresses the fact that, in a particular universe of discourse, all objects have a 

particular property. 

o ∀x: means: 

o For all objects xx, it is true that ... 

 ∀ is usually pronounced “For all . . .”. (Remember that the upside-down A stands for 

“all.”) 

 That is: 

 Thus, the sentence says, “For all x, if x is a king, then x is a person.” The symbol x is 

called a variable. By convention, variables are lowercase letters. A variable is a term 

all by itself, and as such can also serve as the argument of a function—for example, 

LeftLeg(x). A term with no variables is called a ground term. 

 The universal quantifier can be considered as a repeated conjunction: 

 Suppose our universe of discourse consists of the objects X1, X2, X3…X1, X2, 

X3… and so on. 

 

2. Existential quantifier 

 The symbol ∃ is called the existential quantifier. 

 It expresses the fact that, in a particular universe of discourse, there exists (at least 

one) object having a particular property. 

That is: ∃x means: There exists at least one object xx such that ... 

 for example, that King John has a crown on his head, we write 

https://proofwiki.org/wiki/Definition:Universe_of_Discourse
https://proofwiki.org/wiki/Definition:Object
https://proofwiki.org/wiki/Definition:Conjunction
https://proofwiki.org/wiki/Definition:Universe_of_Discourse
https://proofwiki.org/wiki/Definition:Object
https://proofwiki.org/wiki/Definition:Universe_of_Discourse
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∃ x Crown(x) ∧ OnHead(x, John) . 

 ∃x is pronounced “There exists an x such that . . .” or “For some x . . .” 

 

 

Q.4 c) Define the wumpus world problem in terms of first order logic.   (5) 

 Propositional logic can only represent facts about the world. 

First-order logic describes a world which consists of objects and properties (or 

predicates) of those objects. 

Among objects, various relations hold, e.g., Parent(Martin, Zac). 

A function is a relation in which there is only one value for a given input. 

 Examples 

  

o Objects: people, houses, numbers, planets,... 

o Relations: parent, brother-of, greater-than,... 

o Properties: red, round, prime,... 

o Functions: father-of, one-more-than 

 Examples: 

  

o "One plus one equals two." 

o "Squares neighbouring the Wumpus are smelly." 

o First-order logic is universal in the sense that it can express anything 

that can be programmed. 

The Wumpus World environment 

• The Wumpus computer game 

• The agent explores a cave consisting of rooms connected by passageways.  

• Lurking somewhere in the cave is the Wumpus, a beast that eats any agent that enters 

its room.  

• Some rooms contain bottomless pits that trap any agent that wanders into the room.  

• Occasionally, there is a heap of gold in a room. 

• The goal is: 

–  to collect the gold and  

– exit the world  

– without being eaten 
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I. Recall that the wumpus agent receives a percept vector with five elements. The 

corresponding first-order sentence stored in the knowledge base must include both the 

percept and the time at which it occurred; otherwise, the agent will get confused about 

when it saw what. 

II. We use integers for time steps. A typical percept sentence would be Percept ([Stench, 

Breeze, Glitter, None, None], 5). Here, Percept is a binary predicate, and Stench and 

so on are constants placed in a list. The actions in the wumpus world can be 

represented by logical terms: Turn (Right), Turn (Left), Forward, Shoot, Grab, Climb. 

III. To determine which is best, the agent program executes the query 

ASKVARS(∃ a BestAction(a, 5)) , 

which returns a binding list such as {a/Grab}. The agent program can then return 

Grab as the action to take. The raw percept data implies certain facts about the current 

state.  

For example: 

∀ t, s, g, m, c Percept ([s, Breeze, g,m, c], t) ⇒ Breeze(t) , 

∀ t, s, b, m, c Percept ([s, b, Glitter,m, c], t) ⇒ Glitter (t) ,and so on.  

These rules exhibit a trivial form of the reasoning process called perception 

IV. Simple “reflex” behavior can also be implemented by quantified implication 

sentences. For example, we have ∀ t Glitter (t) ⇒ BestAction(Grab, t) .Given the 

percept and rules from the preceding paragraphs, this would yield the desired 

conclusion BestAction(Grab, 5)—that is, Grab is the right thing to do. 

V. We have represented the agent’s inputs and outputs; now it is time to represent the 

environment itself. Let us begin with objects. Obvious candidates are squares, pits, 

and the wumpus. We could name each square—Square1,2 and so on—but then the 

fact that Square1,2 and Square1,3 are adjacent would have to be an “extra” fact, and 

we would need one such fact for each pair of squares. It is better to use a complex 

term in which the row and column appear as integers; for example, we can simply use 

the list term [1, 2]. Adjacency of any two squares can be defined as 



MUQuestionPapers.com 
 

∀ x, y, a, b Adjacent ([x, y], [a, b]) ⇔ 

(x = a ∧ (y = b − 1 ∨ y = b + 1)) ∨ (y = b ∧ (x = a − 1 ∨ x = a + 1)). 

VI. We could name each pit, but this would be inappropriate for a different reason: there 

is no reason to distinguish among pits.10 It is simpler to use a unary predicate Pit that 

is true of squares containing pits. Finally, since there is exactly one wumpus, a 

constant Wumpus is just as good as a unary predicate (and perhaps more dignified 

from the wumpus’s viewpoint). The agent’s location changes over time, so we write 

At(Agent, s, t) to mean that the agent is at square s at time t. We can fix the wumpus’s 

location with ∀t At(Wumpus, [2, 2], t).We can then say that objects can only be at one 

location at a time: 

∀ x, s1, s2, t At(x, s1, t) ∧ At(x, s2, t) ⇒ s1 = s2 . 

VII. Given its current location, the agent can infer properties of the square from properties 

of its current percept. For example, if the agent is at a square and perceives a breeze, 

then that square is breezy: 

∀ s, t At(Agent, s, t) ∧ Breeze(t) ⇒ Breezy(s) . 

VIII. It is useful to know that a square is breezy because we know that the pits cannot move 

about. Notice that Breezy has no time argument. Having discovered which places are 

breezy (or smelly) and, very important, not breezy (or not smelly), the agent can 

deduce where the pits are (and where the wumpus is). In first-order logic we can 

quantify over time, so we need just one successor-state axiom for each predicate, 

rather than a different copy for each time step.  

 

 

Q.4 d) Explain the following concepts       (5) 

   i. Universal Instantiation  ii. Existential Instantiation 

i. Universal instantiation 

 The rule of Universal Instantiation (UI for short) says that we can infer any sentence 

obtained by substituting a ground term (a term without variables) for the variable. To 

write out the inference rule formally, we use the notion of substitutions. 

 This rule says that any substitution instance of a proposition function can be validly 

deduced from a universal proposition. A universal proposition is true only when it has 

only true substitution instances. This is the necessary and sufficient condition for any 

true universal proposition. Therefore any true substitution instance can be validly 

deduced from the respective universal proposition. 

 Let SUBST (θ, α) denote the result of applying the substitution θ to the sentence α. 

Then the rule is written 

∀v α 

SUBST ({v/g}, α) 

 For any variable v and ground term g. For example, the three sentences given earlier 

are obtained with the substitutions {x/John}, {x/Richard}, and {x/Father (John)}. 

 Use the UI rule in the following way:  
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o First, remove the universal quantifier.  

o Next, replace the resulting free variable by a constant. 

ii. Existential Instantiation 

 In the rule for Existential Instantiation, the variable is replaced by a single new 

constant symbol.  

 This rule is applicable when the proposition has existential quantifier and in this case 

any symbol ranging from a through w is used as a substitute for the individual 

variable x. We can infer the truth of any substitution instance from existential 

quantification because existential quantification is true only when there is at least one 

true substitution instance 

 The formal statement is as follows: for any sentence α, variable v, and constant 

symbol k that does not appear elsewhere in the knowledge base, 

∃v α 

SUBST ({v/k}, α) 

 For example, from the sentence 

∃ X Crown(x) ∧ OnHead(x, John) 

We can infer the sentence 

Crown (C1) ∧ OnHead (C1, John) 

As long as C1 does not appear elsewhere in the knowledge base. Basically, the 

existential 

 Sentence says there is some object satisfying a condition, and applying the existential 

instantiation rule just gives a name to that object. 

 Use the rule EI in a statement in the following way:  

o First, remove the existential quantifier.  

o Next, replace the resulting free variable with a constant 

 

 

Q.4 e) write and explain a simple backward-chaining algorithm for first-order 

knowledge bases.          (5) 

I. Backward chaining is the same idea as forward chaining except that you start with 

requiring the learner to complete the last step of the task analysis. This means that you 

will perform all the preceding steps either for or with the learner and then begin to 

fade your prompts with the last step only.  

II. Reinforcement is provided contingent upon the last step being completed. Once the 

learner is able to complete the last step independently, you will require the learner to 

complete the last two steps before receiving a reinforcer, and so on, until the learner is 

able to complete the entire chain independently before receiving access to a 

reinforcer. 

III. Backward chaining uses the same basic approach as forward chaining but in reverse 

order. That is, you start with the last step in the chain rather than the first. The 

therapist can either prompt the learner through the entire sequence, without 

opportunities for independent responding, until he gets to the final step (and then 
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teach that step), or the therapist can initiate the teaching interaction by going straight 

to the last step.  

IV. Either way, when the last step occurs, the therapist uses prompting to help the learner 

perform the step correctly, reinforces correct responding with a powerful reinforcer, 

and then fades prompts across subsequent trials. When the last step is mastered, then 

each teaching interaction begins with the second-to-last step, and so on, until the first 

step in the chain is mastered, at which point the whole task analysis is mastered. 

V. Backward chaining is a kind of AND/OR search—the OR part because the goal query 

can be proved by any rule in the knowledge base, and the AND part because all the 

conjuncts in the lhs of a clause must be proved. 

VI. Backward chaining, as we have written it, is clearly a depth-first search algorithm. 

This means that its space requirements are linear in the size of the proof (neglecting, 

for now, the space required to accumulate the solutions). It also means that backward 

chaining (unlike forward chaining) suffers from problems with repeated states and 

incompleteness. We will discuss these problems and some potential solutions, but first 

we show how backward chaining is used in logic programming systems. 

 function FOL-BC-ASK(KB, query) returns a generator of substitutions 

      return FOL-BC-OR(KB, query,{ }) 

 generator FOL-BC-OR(KB, goal , θ) yields a substitution 

      for each rule (lhs ⇒ rhs) in FETCH-RULES-FOR-GOAL(KB, goal ) do 

                      (lhs, rhs)←STANDARDIZE-VARIABLES((lhs, rhs)) 

                      for each θ’ in FOL-BC-AND(KB, lhs, UNIFY(rhs, goal , θ)) do 

                           yield θ’ 

           generator FOL-BC-AND(KB, goals, θ) yields a substitution 

       if θ = failure then return 

      else if LENGTH(goals) = 0 then yield θ 

                 else do 

                 first, rest ←FIRST(goals), REST(goals) 

                 for each θ’ in FOL-BC-OR(KB, SUBST(θ, first), θ) do 

                 for each θ” in FOL-BC-AND(KB, rest , θ’) do 

       yield θ” 

A simple backward-chaining algorithm for first-order knowledge bases 



MUQuestionPapers.com 
 

 

Tree constructed by backward chaining 

 Proof tree constructed by backward chaining to prove that west is a criminal. 

 The tree should be read depth first, left to right. To prove Criminal (West), we have to 

prove the four conjuncts below it. Some of these are in the knowledge base, and 

others require further backward chaining. Bindings for each successful unification are 

shown next to the corresponding sub goal. Note that once one sub goal in a 

conjunction succeeds, its substitution is applied to subsequent sub goals. Thus, by the 

time FOL-BC-ASK gets to the last conjunct, originally Hostile (z), z is already bound 

to Nono. 

 

 

Q.4 f) Explain the first order definite clause.      (5) 

I. First-order definite clauses closely resemble propositional definite clauses they are 

disjunctions of literals of which exactly one is positive. A definite clause either is 

atomic or is an implication whose antecedent is a conjunction of positive literals and 

whose consequent is a single positive literal. The following are first-order definite 

clauses: 

 King(x) ∧ Greedy(x) ⇒ Evil(x)  

 King(John)  

 Greedy(y)  

II. Unlike propositional literals, first-order literals can include variables, in which case 

those variables are assumed to be universally quantified. (Typically, we omit 

universal quantifiers when writing definite clauses.) Not every knowledge base can be 

converted into a set of definite clauses because of the single-positive-literal 

restriction, but many can. Consider the following problem:  

– The law says that it is a crime for an American to sell weapons to hostile 

nations. The country Nono, an enemy of America, has some missiles, and all 

of its missiles were sold to it by Colonel West, who is American.  
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III. We will prove that west is a criminal. First, we will represent these facts as first-order 

definite clauses. The next section shows how the forward-chaining algorithm solves 

the problem. 

 

“. . . it is a crime for an American to sell weapons to hostile nations”: 

 American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal (x)  

“Nono . . . has some missiles.” The sentence ∃ x Owns(Nono, x)∧Missile(x) is 

transformed into two definite clauses by Existential Instantiation, introducing a new 

constant M1: 

 Owns(Nono,M1)  

 Missile(M1)  

“All of its missiles were sold to it by Colonel West”: 

 Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) . (9.6) 

We will also need to know that missiles are weapons: 

 Missile(x) ⇒ Weapon(x) 

 and we must know that an enemy of America counts as “hostile”: 

  Enemy(x,America) ⇒ Hostile(x) . (9.8) 

 “West, who is American . . .”: 

  American(West) . (9.9) 

 “The country Nono, an enemy of America . . .”: 

  Enemy(Nono,America) . (9.10) 

IV. This knowledge base contains no function symbols and is therefore an instance of the 

class of Datalog knowledge bases. Datalog is a language that is restricted to first-

order definite clauses with no function symbols. Datalog gets its name because it can 

represent the type of statements typically made in relational databases. We will see 

that the absence of function symbols makes inference much easier. 

 

 

Q.5 a) Write PDDL description of an air cargo transportation planning problem. (5) 

 Planning Domain Definition Language (PDDL) 

 Standard encoding language for “classical” planning tasks Components of a PDDL 

planning task:  

o Objects: Things in the world that interest us.  

o Predicates: Properties of objects that we are interested in; can be true or false.  

o Initial state: The state of the world that we start in.  

o Goal specification: Things that we want to be true.  

o Actions/Operators: Ways of changing the state of the world. 

Init (At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK) 

∧ Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) 

∧ Airport (JFK) ∧ Airport (SFO)) 

Goal (At(C1, JFK) ∧ At(C2, SFO)) 

Action(Load (c, p, a), 
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PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport (a) 

EFFECT: ￢ At(c, a) ∧ In(c, p)) 

Action(Unload(c, p, a), 

PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport (a) 

EFFECT: At(c, a) ∧ ￢In(c, p)) 

Action(Fly(p, from, to), 

PRECOND: At(p, from) ∧ Plane(p) ∧ Airport (from) ∧ Airport (to) 

EFFECT: ￢ At(p, from) ∧ At(p, to)) 

A PDDL description of an air cargo transportation planning problem. 

I. Figure shows an air cargo transport problem involving loading and unloading cargo 

and flying it from place to place. The problem can be defined with three actions: 

Load, Unload, and Fly.  

II. The actions affect two predicates: In(c, p) means that cargo c is inside plane p, and 

At(x, a) means that object x (either plane or cargo) is at airport a. Note that some care 

must be taken to make sure the At predicates are maintained properly.  

III. When a plane flies from one airport to another, all the cargo inside the plane goes 

with it. In first-order logic it would be easy to quantify over all objects that are inside 

the plane.  

IV. But basic PDDL does not have a universal quantifier, so we need a different solution. 

The approach we use is to say that a piece of cargo ceases to be At anywhere when it 

is In a plane; the cargo only becomes At the new airport when it is unloaded. So At 

really means “available for use at a given location.” 

V. The following plan is a solution to the problem: 

[Load (C1, P1, SFO), Fly (P1, SFO, JFK), Unload (C1, P1, JFK), 

Load (C2, P2, JFK), Fly (P2, JFK, SFO), Unload (C2, P2, SFO)]. 

VI. Finally, there is the problem of spurious actions such as Fly (P1, JFK, JFK), which 

should be a no-op, but which has contradictory effects (according to the definition, the 

effect would include At(P1, JFK) ∧ ￢At(P1, JFK)). It is common to ignore such 

problems, because they seldom cause incorrect plans to be produced. The correct 

approach is to add inequality preconditions saying that the from and to airports must 

be different. 

 

 

Q.5 b) Explain GRAPHPLAN algorithm.       (5) 

I. Planning graphs are an efficient way to create a representation of a planning problem 

that can be used to Achieve better heuristic estimates Directly construct plans  

II. Planning graphs only work for propositional problems. 

III. Planning graphs consists of a seq of levels that correspond to time steps in the plan.  

Level 0 is the initial state.  Each level consists of a set of literals and a set of actions 

that represent what might be possible at that step in the plan  Might be is the key to 
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efficiency Records only a restricted subset of possible negative interactions among 

actions. 

IV. Each level consists of  

 Literals = all those that could be true at that time step, depending upon the 

actions executed at preceding time steps.  

 Actions = all those actions that could have their preconditions satisfied at that 

time step, depending on which of the literals actually hold. 

 

function GRAPHPLAN(problem) returns solution or failure 

 graph ←INITIAL-PLANNING-GRAPH(problem) 

 goals ←CONJUNCTS(problem.GOAL) 

 nogoods ←an empty hash table 

 for tl = 0 to∞do 

     if goals all non-mutex in St of graph then 

                 solution ←EXTRACT-SOLUTION(graph, goals, NUMLEVELS(graph), nogoods) 

      if solution _= failure then return solution 

    if graph and nogoods have both leveled off then return failure 

    graph←EXPAND-GRAPH(graph, problem) 

The GRAPHPLAN algorithm. GRAPHPLAN calls EXPAND-GRAPH to add a level 

until either a solution is found by EXTRACT-SOLUTION, or no solution is possible. 

V. The GRAPHPLAN algorithm repeatedly adds a level to a planning graph with 

EXPAND-GRAPH. Once all the goals show up as nonmutex in the graph, 

GRAPHPLAN calls EXTRACT-SOLUTION to search for a plan that solves the 

problem. If that fails, it expands another level and tries again, terminating with failure 

when there is no reason to go on. 

 
Initially the plan consist of 5 literals from the initial state and the CWA literals (S0). 

 Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)  

 Also add persistence actions and mutex relations.  

 Add the effects at level S1  

 Repeat until goal is in level Si 
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VI. EXPAND-GRAPH also looks for mutex relations 

 Inconsistent effects:- E.g. Remove(Spare, Trunk) and LeaveOverNight due to 

At(Spare,Ground) and not At(Spare, Ground)  

 Interference :- E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as 

PRECOND and not At(Flat,Axle) as EFFECT  

 Competing needs:- E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to 

At(Flat.Axle) and not At(Flat, Axle)  

 Inconsistent support:- E.g. in S2, At(Spare,Axle) and At(Flat,Axle) 

 

 

Q.5 c) List various classical planning approaches. Explain any one.   (5) 

Currently the most popular and effective approaches to fully automated planning are: 

• Translating to a Boolean satisfiability (SAT) problem 

• Forward state-space search with carefully crafted heuristics  

• Search using a planning graph  

Classical planning as Boolean satisfiability 

I. Here we show how to translate a PDDL description into a form that can be processed 

by SATPLAN. The translation is a series of straightforward steps: 

II. Propositionalize the actions: replace each action schema with a set of ground actions 

formed by substituting constants for each of the variables. These ground actions are 

not part of the translation, but will be used in subsequent steps. 

III. Define the initial state: assert F0 for every fluent F in the problem’s initial state, and 

￢F for every fluent not mentioned in the initial state. 

IV. Propositionalize the goal: for every variable in the goal, replace the literals that 

contain the variable with a disjunction over constants. For example, the goal of having 

block A on another block, On (A, x) ∧ Block(x) in a world with objects A, B and C, 

would be replaced by the goal  

(On (A, A) ∧ Block (A)) ∨ (On (A, B) ∧ Block (B)) ∨ (On (A, C) ∧ Block (C)). 

V. Add successor-state axioms: For each fluent F, add an axiom of the form 

  Ft+1 ⇔ ActionCausesFt ∨ (Ft ∧ ￢ActionCausesNotF t), 

 where ActionCausesF is a disjunction of all the ground actions that have F in 

 their add list, and ActionCausesNotF is a disjunction of all the ground actions 

 that have F in their delete list. 

VI. Add precondition axioms: For each ground action A, add the axiom At ⇒ PRE (A)t, 

that is, if an action is taken at time t, then the preconditions must have been true. 

VII. Add action exclusion axioms: say that every action is distinct from every other action. 

The resulting translation is in the form that we can hand to SATPLAN to find a 

solution. 
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Q.5 d) Explain the following terms        (5) 

 i. Circumscription   ii. Default logic 

i. Circumscription 

 Circumscription is a non-monotonic logic created by John McCarthy to formalize 

the common sense assumption that things are as expected unless otherwise specified. 

Circumscription was later used by McCarthy in an attempt to solve the frame 

problem. To implement circumscription in its initial formulation, McCarthy 

augmented first-order logic to allow the minimization of the extension of some 

predicates, where the extension of a predicate is the set of tuples of values the 

predicate is true on. This minimization is similar to the closed-world assumption that 

what is not known to be true is false. 

 The original problem considered by McCarthy was that of missionaries and cannibals: 

there are three missionaries and three cannibals on one bank of a river; they have to 

cross the river using a boat that can only take two, with the additional constraint that 

cannibals must never outnumber the missionaries on either bank (as otherwise the 

missionaries would be killed and, presumably, eaten).  

 Bird(x) ∧￢Abnormal 1(x) ⇒ Flies(x).  

If we say that Abnormal 1 is to be circumscribed, a circumscriptive reasoner is 

entitled to assume ￢Abnormal 1(x) unless Abnormal 1(x) is known to be true. This 

allows the conclusion Flies(Tweety) to be drawn from the premise Bird(Tweety ), but 

the conclusion no longer holds if Abnormal 1(Tweety) is asserted. 

 Circumscription can be viewed as an example of a model preference logic. In such 

logics, a sentence is entailed (with default status) if it is true in all preferred models of 

the KB, as opposed to the requirement of truth in all models in classical logic. 

 The standard example for which multiple inheritance is problematic is called the 

“Nixon diamond.” It arises from the observation that Richard Nixon was both a 

Quaker (and hence by default a pacifist) and a Republican (and hence by default not a 

pacifist). We can write this as follows: 

o Republican(Nixon) ∧ Quaker(Nixon)  

o Republican(x) ∧￢Abnormal 2(x) ⇒ ￢Pacifist (x)  

o Quaker(x) ∧ ￢Abnormal 3(x) ⇒ Pacifist (x)  

 If we circumscribe Abnormal 2 and Abnormal 3, there are two preferred models: one 

in which Abnormal 2(Nixon) and Pacifist (Nixon) hold and one in which Abnormal 

3(Nixon) and ￢Pacifist(Nixon) hold. Thus, the circumscriptive reasoner remains 

properly agnostic as to whether Nixon was a pacifist. If we wish, in addition, to assert 

that religious beliefs take precedence over political beliefs, we can use a formalism 

called prioritized circumscription to give preference to models where Abnormal 3 is 

minimized. 
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ii. Default logic 

 Default logic is a non-monotonic logic proposed by Raymond Reiter to formalize 

reasoning with default assumptions. 

 Default logic can express facts like “by default, something is true”; by contrast, 

standard logic can only express that something is true or that something is false. This 

is a problem because reasoning often involves facts that are true in the majority of 

cases but not always. A classical example is: “birds typically fly”. This rule can be 

expressed in standard logic either by “all birds fly”, which is inconsistent with the 

fact that penguins do not fly, or by “all birds that are not penguins and not ostriches 

and ... fly”, which requires all exceptions to the rule to be specified. Default logic 

aims at formalizing inference rules like this one without explicitly mentioning all 

their exceptions. 

 Default logic is a formalism in which default rules can be written to generate 

contingent, nonmonotonic conclusions. A default rule looks like this: 

  Bird(x) : Flies(x)/Flies(x)  

 This rule means that if Bird(x) is true, and if Flies(x) is consistent with the 

knowledge base, then Flies(x) may be concluded by default. In general, a default rule 

has the form  

  P : J1, . . . , Jn/C  

where P is called the prerequisite, C is the conclusion, and Ji are the justifications—if 

any one of them can be proven false, then the conclusion cannot be drawn. Any 

variable that appears in Ji or C must also appear in P.  

 The Nixon-diamond example can be represented in default logic with one fact and 

two default rules: 

o Republican(Nixon) ∧ Quaker(Nixon)  

o Republican(x) : ￢Pacifist (x)/￢Pacifist (x)  

o Quaker(x) : Pacifist (x)/Pacifist (x)  

 To interpret what the default rules mean, we define the notion of an extension of a 

default theory to be a maximal set of consequences of the theory. That is, an 

extension S consists of the original known facts and a set of conclusions from the 

default rules, such that no additional conclusions can be drawn from S and the 

justifications of every default conclusion in S are consistent with S 

 

 

Q.5 e) Write a short note on description logics.      (5)  

I. The syntax of first-order logic is designed to make it easy to say things about objects. 

Description logics are notations that are designed to make it easier to describe 

definitions and properties of categories.  

II. Description logic systems evolved from semantic networks in response to pressure to 

formalize what the networks mean while retaining the emphasis on taxonomic 

structure as an organizing principle. 
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III. The principal inference tasks for description logics are subsumption (checking if one 

category is a subset of another by comparing their definitions) and classification 

(checking whether an object belongs to a category). Some systems also include 

consistency of a category definition—whether the membership criteria are logically 

satisfiable. 

Concept → Thing | ConceptName 

 | And(Concept , . . .) 

 | All(RoleName, Concept ) 

 | AtLeast(Integer, RoleName ) 

 | AtMost(Integer, RoleName ) 

 | Fills(RoleName , IndividualName, . . .) 

 | SameAs(Path, Path) 

 | OneOf(IndividualName, . . .) 

Path → [RoleName, . . .] 

The syntax of descriptions in a subset of the CLASSIC language 

IV. The CLASSIC language (Borgida et al., 1989) is a typical description logic. 

For example, to say that bachelors are unmarried adult males we would write 

  Bachelor = And(Unmarried, Adult ,Male) . 

 The equivalent in first-order logic would be 

  Bachelor (x) ⇔ Unmarried(x) ∧ Adult(x) ∧ Male(x). 

V. Any description in CLASSIC can be translated into an equivalent first-order sentence, 

but some descriptions are more straightforward in CLASSIC. 

For example, to describe the set of men with at least three sons who are all 

unemployed and married to doctors, and at most two daughters who are all professors 

in physics or math departments, we would use 

And(Man, AtLeast(3, Son), AtMost(2, Daughter ), 

All(Son, And(Unemployed,Married, All(Spouse, Doctor ))), 

All(Daughter , And(Professor , Fills(Department , Physics,Math)))) . 

 

 

Q.5 f) Explain semantic network with example.      (5) 

I. Semantic networks are an alternative to predicate logic as a form of knowledge 

representation. The idea is that we can store our knowledge in the form of a graph, 

with nodes representing objects in the world, and arcs representing relationships 

between those objects. 

II. A semantic network, or frame network is a knowledge base that 

represents semantic relations between concepts in a network. It is 

a directed or undirected graph consisting of vertices, which represent concepts, 

and edges, which represent semantic relations between concepts, mapping or 
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connecting semantic fields. A semantic network may be instantiated as, for example, 

a graph database or a concept map. 

III. Typical standardized semantic networks are expressed as semantic triples. Semantic 

networks are used in natural language processing applications such as semantic 

parsing and word-sense disambiguation.  

IV. The structural idea is that knowledge can be stored in the form of graphs, with nodes 

representing objects in the world, and arcs representing relationships between those 

objects. 

 Semantic nets consist of nodes, links and link labels. In these networks 

diagram, nodes appear in form of circles or ellipses or even rectangles which 

represents objects such as physical objects, concepts or situations. 

 Links appear as arrows to express the relationships between objects, and link 

labels specify relations. 

 Relationships provide the basic needed structure for organizing the 

knowledge, so therefore objects and relations involved are also not needed to 

be concrete. 

 Semantic nets are also referred to as associative nets as the  nodes are 

associated with other nodes 

 

 

A semantic network with four objects (John, Mary, 1, and 2) and four categories. 

Relations are denoted by labeled links. 

V. For example, Figure has a MemberOf link between Mary and FemalePersons , 

corresponding to the logical assertion Mary ∈FemalePersons ; similarly, the SisterOf 

link between Mary and John corresponds to the assertion SisterOf (Mary, John). We 

can connect categories using SubsetOf links, and so on. It is such fun drawing bubbles 

and arrows that one can get carried away.  
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VI. For example, we know that persons have female persons as mothers, so can we draw a 

HasMother link from Persons to FemalePersons? The answer is no, because 

HasMother is a relation between a person and his or her mother, and categories do not 

have mother For this reason, we have used a special notation—the double-boxed 

link—in Figure This link asserts that 

  ∀x x∈ Persons ⇒ [∀ y HasMother (x, y) ⇒ y ∈ FemalePersons ] . 

 We might also want to assert that persons have two legs—that is, 

  ∀x x∈ Persons ⇒ Legs(x, 2)  

VII. Semantic Networks Are Majorly Used For 

 Representing data 

 Revealing structure (relations, proximity, relative importance) 

 Supporting conceptual edition 

 Supporting navigation 

VIII. Advantages of Using Semantic Networks 

 The semantic network is more natural than the logical representation; 

 The semantic network permits using of effective inference algorithm 

(graphical algorithm) 

 They are simple and can be easily implemented and understood. 

 The semantic network can be used as a typical connection application among various 

fields of knowledge, for instance, among computer science and anthropology. 

 The semantic network permits a simple approach to investigate the problem space. 

IX. Disadvantages of Using Semantic Networks 

 There is no standard definition for link names 

 Semantic Nets are not intelligent, dependent on the creator 

 


