

MUQuestionPapers.com

Paper/ Subject Code: 53704 / Artificial Intelligence

(NOV 2018) Q.P. code: 57835

Q.1 a) What is Artificial Intelligence? State its applications. (5)

 AI is one of the newest fields in science and engineering.

 AI is a general term that implies the use of a computer to model & replicate intelligent

behaviour.

 “AI is the design, study & construction of computer programs that behave

intelligently.”

 Artificial intelligence (AI) refers to the simulation of human intelligence in machines

that are programmed to think like humans and mimic their actions. The term may also

be applied to any machine that exhibits traits associated with a human mind such as

learning and problem-solving.

 The ideal characteristic of artificial intelligence is its ability to rationalize and take

actions that have the best chance of achieving a specific goal.

 AI is continuously evolving to benefit many different industries. Machines are wired

using a cross-disciplinary approach based in mathematics, computer science,

linguistics, psychology, and more.

 Research in AI focuses on development & analysis of algorithms that learn & perform

intelligent behaviour with minimal human intervention.

 AI is the ability of machine or computer program to think and learn.

 The concept of AI is based on idea of building machines capable of thinking, acting &

learning like humans.

 AI is only field to attempt to build machines that will function autonomously complex

changing environments.

 AI has focused chiefly on following components of intelligence.

o Learning: - the learning by trial & error.

o Reasoning: - reasoning skill often happen subconsciously & within seconds.

o Decision making: - it is a process of making choices by identifying a decision

gathering information & assessing alternative resolutions.

o Problem solving: - problem solving particularly in AI may be characterized as

systematic search in order to reach goal or solutions.

Artificial Intelligence has various applications in today's society. It is becoming essential for

today's time because it can solve complex problems with an efficient way in multiple

industries, such as Healthcare, entertainment, finance, education, etc. AI is making our daily

life more comfortable and fast.

Following are some sectors which have the application of Artificial Intelligence:

https://www.investopedia.com/articles/investing/072215/investors-turn-artificial-intelligence.asp

MUQuestionPapers.com

I. AI in Astronomy

o Artificial Intelligence can be very useful to solve complex universe problems. AI

technology can be helpful for understanding the universe such as how it works, origin,

etc.

II. AI in Healthcare

o In the last, five to ten years, AI becoming more advantageous for the healthcare

industry and going to have a significant impact on this industry.

o Healthcare Industries are applying AI to make a better and faster diagnosis than

humans. AI can help doctors with diagnoses and can inform when patients are

worsening so that medical help can reach to the patient before hospitalization.

III. AI in Gaming

o AI can be used for gaming purpose. The AI machines can play strategic games like

chess, where the machine needs to think of a large number of possible places.

IV. AI in Finance

o AI and finance industries are the best matches for each other. The finance industry is

implementing automation, chatbot, adaptive intelligence, algorithm trading, and

machine learning into financial processes.

V. AI in Data Security

o The security of data is crucial for every company and cyber-attacks are growing very

rapidly in the digital world. AI can be used to make your data more safe and secure.

Some examples such as AEG bot, AI2 Platform, are used to determine software bug

and cyber-attacks in a better way.

VI. AI in Social Media

o Social Media sites such as Facebook, Twitter, and Snapchat contain billions of user

profiles, which need to be stored and managed in a very efficient way. AI can

organize and manage massive amounts of data. AI can analyze lots of data to identify

the latest trends, hashtag, and requirement of different users.

VII. AI in Travel & Transport

o AI is becoming highly demanding for travel industries. AI is capable of doing various

travel related works such as from making travel arrangement to suggesting the hotels,

flights, and best routes to the customers. Travel industries are using AI-powered

MUQuestionPapers.com

chatbots which can make human-like interaction with customers for better and fast

response.

VIII. AI in Automotive Industry

o Some Automotive industries are using AI to provide virtual assistant to their user for

better performance. Such as Tesla has introduced TeslaBot, an intelligent virtual

assistant.

o Various Industries are currently working for developing self-driven cars which can

make your journey more safe and secure.

IX. AI in Robotics:

o Artificial Intelligence has a remarkable role in Robotics. Usually, general robots are

programmed such that they can perform some repetitive task, but with the help of AI,

we can create intelligent robots which can perform tasks with their own experiences

without pre-programmed.

o Humanoid Robots are best examples for AI in robotics, recently the intelligent

Humanoid robot named as Erica and Sophia has been developed which can talk and

behave like humans.

X. AI in Entertainment

o We are currently using some AI based applications in our daily life with some

entertainment services such as Netflix or Amazon. With the help of ML/AI

algorithms, these services show the recommendations for programs or shows.

Q.1 b) Discuss Turing test with Artificial Intelligence approach. (5)

I. The Turing Test, proposed by Alan Turing (1950), was designed to provide a

satisfactory operational definition of intelligence. To judge whether the system can act

like a human, Sir Alan turing had designed a test known as turing test.

II. A Turing Test is a method of inquiry in artificial intelligence (AI) for determining

whether or not a computer is capable of thinking like a human being.

III. A computer passes the test if a human interrogator, after posing some written

questions, cannot tell whether the written responses come from a person or from a

computer. Programming a computer to pass a rigorously applied test provides plenty

to work on. The computer would need to possess the following capabilities:

1. Natural language processing to enable it to communicate successfully in

English;

2. Knowledge representation to store what it knows or hears;

https://searchenterpriseai.techtarget.com/definition/AI-Artificial-Intelligence

MUQuestionPapers.com

3. Automated reasoning to use the stored information to answer questions and

to draw new conclusions;

4. Machine learning to adapt to new circumstances and to detect and extrapolate

patterns.

IV. Turing’s test deliberately avoided direct physical interaction between the interrogator

and the computer, because physical simulation of a person is unnecessary for

intelligence. However, the so-called total Turing Test includes a video signal so that

the interrogator can test the subject’s perceptual abilities, as well as the opportunity

for the interrogator to pass physical objects “through the hatch.” To pass the total

Turing Test, the computer will need

5. Computer vision to perceive objects, and

6. Robotics to manipulate objects and move about.

V. These six disciplines compose most of AI, and Turing deserves credit for designing a

test that remains relevant 60 years later. Yet AI researchers have devoted little effort

to passing the Turing Test, believing that it is more important to study the underlying

principles of intelligence than to duplicate an exemplar.

Q.1 c) What are agents? Explain how they interact with environment. (5)

 An agent is anything that can be viewed as perceiving its environment through

sensors and acting upon that environment through actuators.

 A human agent has eyes, ears, and other organs for sensors and hands, legs, vocal

tract, and so on for actuators.

 Eyes, ears, nose, skin, tongue. These senses sense the environment are called as

sensors. Sensors collect percepts or inputs from environment and passes it to the

processing unit.

 Actuators or effectors are the organs or tools using which the agent acts upon the

environment. Once the sensor senses the environment, it gives this information to

nervous system which takes appropriate action with the help of actuators. In case of

human agents we have hands, legs as actuators or effectors.

 A robotic agent might have cameras and infrared range finders for sensors and various

motors for actuators.

 A software agent receives keystrokes, file contents, and network packets as sensory

inputs and acts on the environment by displaying on the screen, writing files, and

sending network packets.

 Use the term percept to refer to the agent’s perceptual inputs at any given instant. An

agent’s percept sequence is the complete history of everything the agent has ever

perceived.

 In general, an agent’s choice of action at any given instant can depend on the entire

percept sequence observed to date, but not on anything it hasn’t perceived.

MUQuestionPapers.com

 By specifying the agent’s choice of action for every possible percept sequence, we

have said more or less everything there is to say about the agent. Mathematically

speaking, we say that an agent’s behaviour is described by the agent function that

maps any given percept sequence to an action.

 Percepts

 Actions

Agents interact with environments through sensors and actuators

Take a simple example of vacuum cleaner agent.

 As shown in figure, there are two blocks A & B having some dirt. Vacuum cleaner

agent supposed to sense the dirt and collect it, thereby making the room clean.

 In order to do that the agent must have a camera to see the dirt and a mechanism to

move forward, backward, left and right to reach to the dirt. Also it should absorb the

dirt. Based on the percepts, actions will be performed. For example: Move left, Move

right, absorb, No Operation.

 Hence the sensor for vacuum cleaner agent can be camera, dirt sensor and the actuator

can be motor to make it move, absorption mechanism. And it can be represented as

[A, Dirty], [B, Clean], [A, Absorb], [B, Nop], etc.

Types of Environment

I. Fully observable vs. partially observable:

Agent Sensors

 Actuators

En
viro

n
m

e
n

t

?

MUQuestionPapers.com

 If an agent’s sensors give it access to the complete state of the environment at each

point in time, then we say that the task environment is fully observable.

 Fully observable environments are convenient because the agent need not maintain

any internal state to keep track of the world. An environment might be partially

observable because of noisy and inaccurate sensors or because parts of the state are

simply missing from the sensor data.

 If the agent has no sensors at all then the environment is unobservable.

II. Single agent vs. multiagent:

 An agent solving a crossword puzzle by itself is clearly in a single-agent environment,

while in case of car driving agent, there are multiple agents driving on the road, hence

it’s a multiagent environment.

 For example, in chess, the opponent entity B is trying to maximize its performance

measure, which, by the rules of chess, minimizes agent A’s performance measure.

Thus, chess is a competitive multiagent environment.

 In the taxi-driving environment, on the other hand, avoiding collisions maximizes the

performance measure of all agents, so it is a partially cooperative multiagent

environment. It is also partially competitive because, for example, only one car can

occupy a parking space.

III. Deterministic vs. stochastic:

 If the next state of the environment is completely determined by the current state and

the action executed by the agent, then we say the environment is deterministic;

otherwise, it is stochastic.

 If the environment is partially observable, however, then it could appear to be

stochastic.

IV. Episodic vs. sequential:

 In an episodic task environment, the agent’s experience is divided into atomic

episodes. In each episode the agent receives a percept and then performs a single

action.

 Crucially, the next episode does not depend on the actions taken in previous episodes.

Many classification tasks are episodic.

 In sequential environments, on the other hand, the current decision could affect all

future decisions.

 Episodic environments are much simpler than sequential environments because the

agent does not need to think ahead.

V. Static vs. dynamic:

 If the environment can change while an agent is deliberating, then we say the

environment is dynamic for that agent; otherwise, it is static.

 Static environments are easy to deal with because the agent need not keep looking at

the world while it is deciding on an action, nor need it worry about the passage of

time.

 Dynamic environments, on the other hand, are continuously asking the agent what it

wants to do; if it hasn’t decided yet, that counts as deciding to do nothing.

MUQuestionPapers.com

 If the environment itself does not change with the passage of time but the agent’s

performance score does, then we say the environment is semi-dynamic.

VI. Discrete vs. continuous:

 The discrete/continuous distinction applies to the state of the environment, to the way

time is handled, and to the percepts and actions of the agent.

 For example, the chess environment has a finite number of distinct states (excluding

the clock).

 Chess also has a discrete set of percepts and actions.

 Taxi driving is a continuous-state and continuous-time problem: the speed and

location of the taxi and of the other vehicles sweep through a range of continuous

values and do so smoothly over time.

 Taxi-driving actions are also continuous (steering angles, etc.). Input from digital

cameras is discrete, strictly speaking, but is typically treated as representing

continuously varying intensities and locations.

VII. Known vs. unknown:

 In known environment, the output for all probable actions is given. state of knowledge

about the “laws of physics” of the environment.

 In case of unknown environment, for an agent to make a decision, it has to gain

knowledge about how the environments works.

Q.1 d) What is rational agent? Discuss in brief about rationality. (5)

Rational Agent:

For each possible percept sequence, a rational agent should select an action that is expected to

maximize its performance measure, based on the evidence provided by the percept sequence

and whatever built-in knowledge the agent has.

1. The concept of rational agents as central to our approach to artificial intelligence.

2. Rationality is distinct from omniscience (all-knowing with infinite knowledge)

3. Agents can perform actions in order to modify future percepts so as to obtain useful

information (information gathering, exploration)

4. An agent is autonomous if its behaviour is determined by its own percepts & experience

(with ability to learn and adapt) without depending solely on build-in knowledge

5. A rational agent is one that does the right thing—conceptually speaking, every entry in

the table for the agent function is filled out correctly. Obviously, doing the right thing is

better than doing the wrong thing, but what does it mean to do the right thing?

6. If the sequence is desirable, then the agent has performed well. This notion of desirability

is captured by a performance measure that evaluates any given sequence of environment

states.

7. For every percept sequence a built-in knowledge base is updated, which is very useful for

decision making, because it stores the consequences of performing some particular action.

MUQuestionPapers.com

8. If the consequences direct to achieve desired goal then we get a good performance

measure factor, else if the consequences do not lead to desired goal sate, then we get a

poor performance measure factor.

For example :- if agents hurts his finger while using nail and hammer, then while using it

for the next time agent will be more careful and the probability of not getting hurts will

increase. In short agent will be able to use the hammer and nail more efficiently.

9. A rational agent should be autonomous—it should learn what it can to compensate for

partial or incorrect prior knowledge.

10. Rational agent not only to gather information but also to learn as much as possible from

what it perceives.

11. After sufficient experience of its environment, the behaviour of a rational agent can

become effectively independent of its prior knowledge. Hence, the incorporation of

learning allows one to design a single rational agent that will succeed in a vast variety of

environments.

12. What is rational at any given time depends on four things:

 The performance measure that defines the criterion of success.

 The agent’s prior knowledge of the environment.

 The actions that the agent can perform.

 The agent’s percept sequence to date.

Acting rationally: The rational agent approach

 An agent is just something that acts (agent comes from the Latin agere, to do). Of

course, all computer programs do something, but computer agents are expected to do

more: operate autonomously, perceive their environment, persist over a prolonged

time period, and adapt to change, and create and pursue goals.

 A rational agent is one that acts so as to achieve the best outcome or, when there is

uncertainty, the best expected outcome. In some situations, there is no provably

correct thing to do, but something must still be done. There are also ways of acting

rationally that cannot be said to involve inference. For example, recoiling from a hot

stove is a reflex action that is usually more successful than a slower action taken after

careful deliberation.

 All the skills needed for the Turing Test also allow an agent to act rationally.

Knowledge representation and reasoning enable agents to reach good decisions. We

need to be able to generate comprehensible sentences in natural language to get by in

a complex society. We need learning not only for erudition, but also because it

improves our ability to generate effective behaviour.

 The rational-agent approach has two advantages over the other approaches. First, it is

more general than the “laws of thought” approach because correct inference is just

one of several possible mechanisms for achieving rationality. Second, it is more

amenable to scientific development than are approaches based on human behaviour or

human thought. The standard of rationality is mathematically well defined and

completely general, and can be “unpacked” to generate agent designs that provably

achieve it.

MUQuestionPapers.com

 One important point to keep in mind: We will see before too long that achieving

perfect rationality—always doing the right thing—is not feasible in complicated

environments.

Q.1 e) Explain PEAS description of task environment for automated taxi. (5)

PEAS stands for Performance, Environment, Actuators, and Sensors. It is the short form

used for performance issues grouped under task environment.

I. Performance Measure:

First, what is the performance measure to which we would like our automated driver

to aspire? Desirable qualities include getting to the correct destination; minimizing

fuel consumption and wear and tear; minimizing the trip time or cost; minimizing

violations of traffic laws and disturbances to other drivers; maximizing safety and

passenger comfort; maximizing profits.

II. Environment:

Next, what is the driving environment that the taxi will face? Any taxi driver must

deal with a variety of roads, ranging from rural lanes and urban alleys to 12-lane

freeways.

The roads contain other traffic, pedestrians, stray animals, road works, police cars,

puddles, and potholes. The taxi must also interact with potential and actual

passengers.

III. Actuators:

The actuators for an automated taxi include those available to a human driver: control

over the engine through the accelerator and control over steering and braking. In

addition, it will need output to a display screen or voice synthesizer to talk back to the

passengers, and perhaps some way to communicate with other vehicles, politely or

otherwise.

IV. Sensors:

The basic sensors for the taxi will include one or more controllable video cameras so

that it can see the road; it might augment these with infrared or sonar sensors to detect

distances to other cars and obstacles. To avoid speeding tickets, the taxi should have a

speedometer, and to control the vehicle properly, especially on curves, it should have

an accelerometer.

PEAS description of task environment for automated taxi

 Performance measure:

o Safe

o Fast

o Optimum speed

o Legal

o comfortable trip

o maximize profits

MUQuestionPapers.com

 Environment:

o Roads

o other traffic

o pedestrians

o customers

 Actuators:

o Steering wheel

o Accelerator

o Brake

o Signal

o horn

 Sensors:

o Cameras

o Sonar

o Speedometer

o GPS

o Odometer

o engine sensors

o keyboard

Q.1 f) Give comparison between Full observable and partially observable agent. (5)

Sr.

No.

Full Observable Agent Partially Observable Agent

I. Fully observable environment is one in

which the agent can always see the entire

state of environment.

Partially observable environment is one

in which the agent can never see the

entire state of environment.

II. In case of fully observable environments

all relevant portions of the environment

are observable.

In case of partially observable

environments not all relevant portions of

the environment are observable.

III. Fully observable environment not need

memory to make an optimal decision.

Partially observable environment need

memory to make an optimal decision.

IV. A fully observable environment agents

are able to gather all the necessary

information required to take actions.

A partially observable environment

agents cannot provide errorless

information at any given time for every

internal state, as the environment is not

seen completely at any point of time.

MUQuestionPapers.com

V. In case of fully observable environments

agents don’t have to keep records of

internal states.

In case of partially observable

environments agents have to keep records

of internal states.

VI. Examples: - Word block problem, 8-

puzzle problem, Sudoku puzzle, cross

word puzzle, Checkers with clock etc.

Examples: - Car driving, Part-picking

robot, Soccer game.

VII. Checker Game is the example of full

observable environment because the

agent has complete knowledge of the

board.

Poker game is an example of partially

observable environment because the

cards are not openly on the table (agent

cannot see the opponent hand). So

everything about the environment is not

accessible.

Q.2 a) Discuss in brief the formulation of single state problem. (5)

I. Problem Formulation

 Goal formulation World states with certain properties

 Definition of the state space (important: only the relevant aspects abstraction

 Definition of the actions that can change the world state

 Definition of the problem type, which is dependent on the knowledge of the world

states and actions states in the search space

 Determination of the search cost (search costs, offline costs) and the execution

costs (path costs, online costs)

II. Single-state problem

 Observable (at least the initial state)

 Deterministic

 Static

 Discrete

III. Single-state problem

 Complete world state knowledge complete action knowledgeThe agent always

knows its world state

IV. Single state Problem can be defined by 5 components

1. Initial State: the state the agent starts

2. Actions: the set of operators that can be executed at a state

3. Transition model: returns the state that results from doing an action in a state

4. Goal test: determines whether a given state is a goal state

MUQuestionPapers.com

5. Path Cost: function that assigns a numeric cost to a path

V. The Vacuum Cleaner Problem as a Single-State Problem

 If the environment is completely accessible, the vacuum cleaner always knows

where it is and where the dirt is. The solution then is reduced to searching for a

path from the initial state to the goal state.

 States for the search: The world states 1-8.

VI. Single-state problem

 exact prediction is possible

 state - is known exactly after any sequence of actions

 accessibility of the world all essential information can be obtained through sensors

 consequences of actions are known to the agent

 goal - for each known initial state, there is a unique

goal state that is guaranteed to be reachable via an action sequence simplest case, but

severely restricted

VII. Vacuum world,

 Limitations:

 Can’t deal with incomplete accessibility

 incomplete knowledge about consequences changes in the world

 indeterminism in the world, in action

VIII. Example:

 Single-state problem formulation

MUQuestionPapers.com

 A problem is defined by 4 items: – initial state e.g., “at Makamba” – operators (or

successor function S(x)), e.g., Makamba Mabanda, Makamba Rutana – goal test, can

be

 Explicit, e.g., x = “at Bujumbura”

 Implicit, e.g., NoDirt(x) – path cost function, e.g., sum of distances, number of

operators executed, etc.

 A solution is a sequence of operators leading from initial state to goal state, e.g.,

Makamba Mabanda Bururi Bujumbura

IX. Example:

 initial state e.g., “at Arad”

 actions: Actions(s) returns applicabile actions in s: (Go(Sibiu), Go(Timisoara),

Go(Zerind)

 transition model - set of action–state pairs (succesor function Result(s,a)): e.g.,

Result(In(Arad), Go(Zerind))=In(Zerind)

 goal test - determines if whether a given state is a goal state explicit, e.g., xs =

“at Bucharest” implicit, e.g., xs = checkmate

 path cost (additive) - reflects agent’s own performance measure e.g., sum of

distances, number of actions executed, etc. c(s, a, s′) is the step cost, assumed

to be ≥ 0

Q.2 b) Give the outline of Breadth First Search algorithm. (5)

 Breadth-first search is a simple strategy in which the root node is expanded first,

then all the successors of the root node are expanded next, then their successors, and

so on. In general, all the nodes are expanded at a given depth in the search tree before

any nodes at the next level are expanded.

 Breadth-first search is an instance of the general graph-search algorithm in which the

shallowest unexpanded node is chosen for expansion. This is achieved very simply by

using a FIFO queue for the frontier. Thus, new nodes (which are always deeper than

their parents) go to the back of the queue, and old nodes, which are shallower than the

new nodes, get expanded first.

 There is one slight tweak on the general graph-search algorithm, which is that the goal

test is applied to each node when it is generated rather than when it is selected for

expansion. This decision is explained below, where we discuss time complexity.

 Note also that the algorithm, following the general template for graph search, discards

any new path to a state already in the frontier or explored set; it is easy to see that any

such path must be at least as deep as the one already found. Thus, breadth-first search

always has the shallowest path to every node on the frontier.

 Pseudocode is given in Figure shows the progress of the search on a simple binary

tree.

MUQuestionPapers.com

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

 node ←a node with STATE = problem.INITIAL-STATE, PATH-COST = 0

 if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)

 frontier ←a FIFO queue with node as the only element

 explored ←an empty set

 loop do

 if EMPTY?(frontier) then return failure

 node←POP(frontier) /* chooses the shallowest node in frontier */

 add node.STATE to explored

 for each action in problem.ACTIONS(node.STATE) do

 child ←CHILD-NODE(problem, node, action)

 if child .STATE is not in explored or frontier then

 if problem.GOAL-TEST(child .STATE) then return SOLUTION(child)

 frontier ←INSERT(child , frontier)

Breadth-first search on a graph

Breadth-first search on a simple binary tree. At each stage, the node to be expanded

next is indicated by a marker

I. We can easily see that it is complete—if the shallowest goal node is at some finite

depth d, breadth-first search will eventually find it after generating all shallower

nodes (provided the branching factor b is finite). Note that as soon as a goal node is

generated, we know it is the shallowest goal node because all shallower nodes must

have been generated already and failed the goal test. Now, the shallowest goal node is

not necessarily the optimal one; technically, breadth-first search is optimal if the path

cost is a non-decreasing function of the depth of the node. The most common such

scenario is that all actions have the same cost.

II. So far, the news about breadth-first search has been good. The news about time and

space is not so good. Imagine searching a uniform tree where every state has b

successors. The root of the search tree generates b nodes at the first level, each of

which generates b more nodes, for a total of b^2 at the second level. Each of these

generates b more nodes, yielding b^3 nodes at the third level, and so on.

III. Now suppose that the solution is at depth d. In the worst case, it is the last node

generated at that level. Then the total number of nodes generated is

b + b^2 + b^3 + ・ ・ ・ + b^d = O(b^d) .

MUQuestionPapers.com

(If the algorithm were to apply the goal test to nodes when selected for expansion,

rather than when generated, the whole layer of nodes at depth d would be expanded

before the goal was detected and the time complexity would be O(b^(d+1)).)

IV. As for space complexity: for any kind of graph search, which stores every expanded

node in the explored set, the space complexity is always within a factor of b of the

time complexity. For breadth-first graph search in particular, every node generated

remains in memory. There will be O(b^(d−1)) nodes in the explored set and O(b^d)

nodes in the frontier, so the space complexity is O(b^d), i.e., it is dominated by the

size of the frontier.

V. Switching to a tree search would not save much space, and in a state space with many

redundant paths, switching could cost a great deal of time. An exponential complexity

bound such as O(b^d) is scary.

VI. The memory requirements are a bigger problem for breadth-first search than is the

execution time. Fortunately, other strategies require less memory. Time is still a major

factor. If your problem has a solution at depth 16, then (given our assumptions) it will

take about 350 years for breadth-first search (or indeed any uninformed search) to

find it. In general, exponential complexity search problems cannot be solved by

uninformed methods for any but the smallest instances.

Q.2 c) Give the outline of tree search algorithm. (5)

I. Search tree: A tree representation of search problem is called Search tree. The

root of the search tree is the root node which is corresponding to the initial state.

II. Tree is a hierarchical data structure which stores the information naturally in the

form of hierarchy unlike linear data structures like, Linked List, Stack, etc. A tree

contains nodes(data) and connections(edges) which should not form a cycle.

III. Following are the few frequently used terminologies for Tree data structure.

 Node — A node is a structure which may contain a value or condition, or

represent a separate data structure.

 Root — The top node in a tree, the prime ancestor.

 Child — A node directly connected to another node when moving away

from the root, an immediate descendant.

 Parent — The converse notion of a child, an immediate ancestor.

 Leaf — A node with no children.

 Internal node — A node with at least one child.

 Edge — The connection between one node and another.

 Depth — The distance between a node and the root.

 Level — the number of edges between a node and the root + 1

MUQuestionPapers.com

 Height — The number of edges on the longest path between a node and a

descendant leaf.

 Breadth — The number of leaves.

 Sub Tree — A tree T is a tree consisting of a node in T and all of its

descendants in T.

 Binary Tree — is a tree data structure in which each node has at most two

children, which are referred to as the left child and the right child.

 Binary Search Tree — is a special type of binary tree which has the

following properties.

 The left subtree of a node contains only nodes with keys lesser than the node’s key.

 The right subtree of a node contains only nodes with keys greater than the node’s key.

 The left and right subtree each must also be a binary search tree.

IV. “In computer science, tree traversal (also known as tree search) is a form of

graph traversal and refers to the process of visiting (checking and/or updating) each

node in a tree data structure, exactly once. Such traversals are classified by the

order in which the nodes are visited.”

V. Tree Traversal Algorithms can be classified broadly in the following two

categories by the order in which the nodes are visited:

 Depth-First Search (DFS) Algorithm: It starts with the root node and first

visits all nodes of one branch as deep as possible of the chosen Node and

before backtracking, it visits all other branches in a similar fashion. There

are three sub-types under this, which we will cover in this article.

 Breadth-First Search (BFS) Algorithm: It also starts from the root node

and visits all nodes of current depth before moving to the next depth in the

tree. We will cover one algorithm of BFS type in the upcoming section.

VI. The general TREE-SEARCH algorithm is shown informally in Figure 2.Search

algorithms all share this basic structure; they vary primarily according to how they

choose which state to expand next—the so-called search strategy.

VII. The eagle-eyed reader will notice one peculiar thing about the search tree shown

in Figure 1 it includes the path from Arad to Sibiu and back to Arad again! We

say that In(Arad) is a repeated state in the search tree, generated in this case by a

loopy path.

MUQuestionPapers.com

Figure 1 Partial search trees for finding a route from Arad to Bucharest. Nodes that

have been expanded are shaded; nodes that have been generated but not yet expanded

are outlined in bold; nodes that have not yet been generated are shown in faint dashed

lines.

VIII. Loopy paths are a special case of the more general concept of redundant paths,

which exist whenever there is more than one way to get from one state to another.

Consider the paths Arad–Sibiu (140 km long) and Arad–Zerind–Oradea–Sibiu

(297 km long). Obviously, the second path is redundant—it’s just a worse way to

get to the same state. If you are concerned about reaching the goal, there’s never

any reason to keep more than one path to any given state, because any goal state

that is reachable by extending one path is also reachable by extending the other.

function TREE-SEARCH(problem) returns a solution, or failure

 initialize the frontier using the initial state of problem

 loop do

 if the frontier is empty then return failure

 choose a leaf node and remove it from the frontier

 if the node contains a goal state then return the corresponding solution

 expand the chosen node, adding the resulting nodes to the frontier

MUQuestionPapers.com

function GRAPH-SEARCH(problem) returns a solution, or failure

 initialize the frontier using the initial state of problem

 initialize the explored set to be empty

 loop do

 if the frontier is empty then return failure

 choose a leaf node and remove it from the frontier

 if the node contains a goal state then return the corresponding solution

 add the node to the explored set

 expand the chosen node, adding the resulting nodes to the frontier

 only if not in the frontier or explored set

Figure 2 An informal description of the general tree-search and graph-search

algorithms.

Q.2 d) Explain the mechanism of genetic algorithm. (5)

I. A genetic algorithm (or GA) is a variant of stochastic beam search in which

successor states are generated by combining two parent states rather than by

modifying a single state. The analogy to natural selection is the same as in stochastic

beam search, except that now we are dealing with sexual rather than asexual

reproduction.

II. Like beam searches, GAs begin with a set of k randomly generated states, called the

population. Each state, or individual, is represented as a string over a finite alphabet—

most commonly, a string of 0s and 1s.

III. For example, an 8-queens state must specify the positions of 8 queens, each in a

column of 8 squares, and so requires 8× log2 8=24 bits. Alternatively, the state could

be represented as 8 digits, each in the range from 1 to 8. (We demonstrate later that

the two encodings behave differently.) Figure shows a population of four 8-digit

strings representing 8-queens states.

MUQuestionPapers.com

The genetic algorithm, illustrated for digit strings representing 8-queens states. The

initial population in (a) is ranked by the fitness function in (b), resulting in pairs

formating in (c). They produce offspring in (d), which are subject to mutation in (e).

IV. The following outline how the genetic algorithm works:

1. The algorithm begins by creating a random initial population.

2. The algorithm then creates a sequence of new populations. At each step, the algorithm

uses the individuals in the current generation to create the next population. To create

the new population, the algorithm performs the following steps:

a. Scores each member of the current population by computing its fitness value.

These values are called the raw fitness scores.

b. Scales the raw fitness scores to convert them into a more usable range of

values. These scaled values are called expectation values.

c. Selects members, called parents, based on their expectation.

d. Some of the individuals in the current population that have lower fitness are

chosen as elite. These elite individuals are passed to the next population.

e. Produces children from the parents. Children are produced either by making

random changes to a single parent—mutation—or by combining the vector

entries of a pair of parents—crossover.

f. Replaces the current population with the children to form the next generation.

3. The algorithm stops when one of the stopping criteria is met.

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual

 inputs: population, a set of individuals

 FITNESS-FN, a function that measures the fitness of an individual

 repeat

 new population ←empty set

 for i = 1 to SIZE(population) do

 x ←RANDOM-SELECTION(population, FITNESS-FN)

 y ←RANDOM-SELECTION(population, FITNESS-FN)

 child ←REPRODUCE(x , y)

 if (small random probability) then child ←MUTATE(child)

 add child to new population

 population ←new population

 until some individual is fit enough, or enough time has elapsed

 return the best individual in population, according to FITNESS-FN

function REPRODUCE(x , y) returns an individual

 inputs: x , y, parent individuals

 n←LENGTH(x); c←random number from 1 to n

 return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))

MUQuestionPapers.com

A genetic algorithm. The algorithm is the same as the one diagrammed in Figure, with

one variation: in this more popular version, each mating of two parents produces only

one offspring, not two.

V. Initial Population: - The algorithm begins by creating a random initial population,

VI. Creating the Next Generation:-

The genetic algorithm creates three types of children for the next generation:

 Eliteare the individuals in the current generation with the best fitness values. These

individuals automatically survive to the next generation.

 Crossover are created by combining the vectors of a pair of parents.

 Mutation children are created by introducing random changes, or mutations, to a

single parent.

o Crossover Children

The algorithm creates crossover children by combining pairs of parents in the

current population. At each coordinate of the child vector, the default

crossover function randomly selects an entry, or gene, at the same coordinate

from one of the two parents and assigns it to the child. For problems with

linear constraints, the default crossover function creates the child as a random

weighted average of the parents.

o Mutation Children

The algorithm creates mutation children by randomly changing the genes of

individual parents. By default, for unconstrained problems the algorithm adds

a random vector from a Gaussian distribution to the parent. For bounded or

linearly constrained problems, the child remains feasible.

VII. Plots of Later Generations

VIII. Stopping Conditions for the Algorithm

The genetic algorithm uses the following options to determine when to stop. See the

default values for each option by running opts = optimoptions('ga').

 MaxGenerations —The algorithm stops when the number of generations

reaches MaxGenerations.

 MaxTime —The algorithm stops after running for an amount of time in seconds equal

to MaxTime.

MUQuestionPapers.com

Q.2 e) Explain how transition model is used for sensing in vacuum cleaner problem. (5)

Sensor-less search (condition)

• Transition model

• Union of all states that 𝑅𝑒𝑠𝑢𝑙𝑡𝑝(s) returns for all states, s, in your current

belief state

• 𝑏′ = 𝑅𝑒𝑠𝑢𝑙𝑡(𝑏, 𝑎) = {𝑠′ : 𝑠′ = 𝑅𝑒𝑠𝑢𝑙𝑡𝑝(s, a) and s ϵ b}

• This is the prediction step, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑝(b, a)

• Goal-Test: If all physical states in belief state satisfy 𝐺𝑜𝑎𝑙 − 𝑇𝑒𝑠𝑡𝑝

• Path cost Tricky in general. Consider what happens if actions in different physical

states have different costs. For now assume cost of an action is the same in all states

1. Prediction stage is the same as for sensorless problems: given the action a in belief state

b, the predicted belief state is ˆb = PREDICT(b, a)

2. Observation prediction stage determines the set of percepts o that could be observed in

the predicted belief state:

POSSIBLE−PERCEPTS(ˆ b) = {o : o = PERCEPT(s) and s ∈ ˆb}

3. Update stage determines, for each possible percept, the belief state that would result

from the percept. The new belief state bo is just the set of states in ˆb that could have

produced the percept: bo = UPDATE(ˆ b, o) = {s : o = PERCEPT(s) and s ∈ ˆb} the

updated belief state bo can be no larger than the predicted belief state ˆb -the belief states

for the different possible percepts will be disjoint, forming a partition of the original

predicted belief state (for deterministic sensing).

Q.2 f) Give the illustration of 8 queen problem using hill climbing algorithm. (5)

I. The hill-climbing search algorithm It is simply a loop that continually moves in the

direction of increasing value—that is, uphill. It terminates when it reaches a “peak”

where no neighbor has a higher value. The algorithm does not maintain a search tree,

so the data structure for the current node need only record the state and the value of

the objective function. Hill climbing does not look ahead beyond the immediate

neighbors of the current state. This resembles trying to find the top of Mount Everest

in a thick fog while suffering from amnesia.

II. Local search algorithms typically use a complete-state formulation, where each state

has 8 queens on the board, one per column. The successors of a state are all possible

states generated by moving a single queen to another square in the same column (so

each state has 8×7=56 successors).

MUQuestionPapers.com

III. The heuristic cost function h is the number of pairs of queens that are attacking each

other, either directly or indirectly. The global minimum of this function is zero, which

occurs only at perfect solutions. Figure (a) shows a state with h=17. The figure also

shows the values of all its successors, with the best successors having h=12.

IV. Hill-climbing algorithms typically choose randomly among the set of best successors

if there is more than one. Hill climbing is sometimes called greedy local search

because it grabs a good neighbour state without thinking ahead about where to go

next. Although greed is considered one of the seven deadly sins, it turns out that

greedy algorithms often perform quite well. Hill climbing often makes rapid progress

toward a solution because it is usually quite easy to improve a bad state. For example,

from the state in Figure (a), it takes just five steps to reach the state in Figure (b),

which has h=1 and is very nearly a solution. Unfortunately, hill climbing often gets

stuck for the following reasons:

 Local maxima: a local maximum is a peak that is higher than each of its

neighbouring states but lower than the global maximum. Hill-climbing

algorithms that reach the vicinity of a local maximum will be drawn upward

toward the peak but will then be stuck with nowhere else to go. More

concretely, the state in Figure (b) is a local maximum (i.e., a local minimum

for the cost h); every move of a single queen makes the situation worse.

 Ridges: Ridges result in a sequence of local maxima that is very difficult for

greedy algorithms to navigate.

 Plateaux: a plateau is a flat area of the state-space landscape. It can be a flat

local maximum, from which no uphill exit exists, or a shoulder, from which

progress is possible. A hill-climbing search might get lost on the plateau.

(a) An 8-queens state with heuristic cost estimate h=17, showing the value of h for each

possible successor obtained by moving a queen within its column. The best moves are

marked.

MUQuestionPapers.com

(b) A local minimum in the 8-queens state space; the state has h=1 but every successor

has a higher cost.

V. In each case, the algorithm reaches a point at which no progress is being made.

Starting from a randomly generated 8-queens state, steepest-ascent hill climbing gets

stuck 86% of the time, solving only 14% of problem instances. It works quickly,

taking just 4 steps on average when it succeeds and 3 when it gets stuck—not bad for

a state space with 8^8 ≈ 17 million states.

VI. If we always allow sideways moves when there are no uphill moves, an infinite loop

will occur whenever the algorithm reaches a flat local maximum that is not a

shoulder. One common solution is to put a limit on the number of consecutive

sideways moves allowed. For example, we could allow up to, say, 100 consecutive

sideways moves in the 8-queens problem. This raises the percentage of problem

instances solved by hill climbing from 14% to 94%. Success comes at a cost: the

algorithm averages roughly 21 steps for each successful instance and 64 for each

failure.

VII. For 8-queens instances with no sideways moves allowed, p ≈ 0.14, so we need

roughly 7 iterations to find a goal (6 failures and 1 success). The expected number of

steps is the cost of one successful iteration plus (1−p)/p times the cost of failure, or

roughly 22 steps in all. When we allow sideways moves, 1/0.94 ≈ 1.06 iterations are

needed on average and (1×21) + (0.06/0.94)×64 ≈ 25 steps.

VIII. For 8-queens, then, random-restart hill climbing is very effective indeed. Even for

three million queens, the approach can find solutions in under a minute.

IX. The success of hill climbing depends very much on the shape of the state-space

landscape: if there are few local maxima and plateaux, random-restart hill climbing

will find a good solution very quickly.

Q.3 a) Explain the working mechanism of min-max algorithm. (5)

I. Minimax is a kind of backtracking algorithm that is used in decision making and

game theory to find the optimal move for a player, assuming that your opponent also

plays optimally. It is widely used in two player turn-based games such as Tic-Tac-

Toe, Backgammon, Mancala, Chess, etc.

II. In Minimax the two players are called maximizer and minimizer.

The maximizer tries to get the highest score possible while the minimizer tries to do

the opposite and get the lowest score possible.

III. It uses a simple recursive computation of the minimax values of each successor state,

directly implementing the defining equations. The recursion proceeds all the way

down to the leaves of the tree, and then the minimax values are backed up through

the tree as the recursion unwinds.

https://www.geeksforgeeks.org/tag/backtracking/

MUQuestionPapers.com

IV. The minimax algorithm performs a complete depth-first exploration of the game tree.

If the maximum depth of the tree is m and there are b legal moves at each point, then

the time complexity of the minimax algorithm is O (bm).

V. The space complexity is O (bm) for an algorithm that generates all actions at once, or

O (m) for an algorithm that generates actions one at a time. For real games, of course,

the time cost is totally impractical, but this algorithm serves as the basis for the

mathematical analysis of games and for more practical algorithms.

Working of Min-Max Algorithm:

 The working of the minimax algorithm can be easily described using an example.

Below we have taken an example of game-tree which is representing the two-

player game.

 In this example, there are two players one is called Maximizer and other is called

Minimizer.

 Maximizer will try to get the Maximum possible score, and Minimizer will try to

get the minimum possible score.

 This algorithm applies DFS, so in this game-tree, we have to go all the way

through the leaves to reach the terminal nodes.

 At the terminal node, the terminal values are given so we will compare those

value and backtrack the tree until the initial state occurs. Following are the main

steps involved in solving the two-player game tree:

 First, we need to replace the single value for each node with a vector of values.

For example, in a three-player game with players A, B, and C, a vector (vA, vB,

vC) is associated with each node. For terminal states, this vector gives the utility

of the state from each player’s viewpoint. (In two-player, zero-sum games, the

two-element vector can be reduced to a single value because the values are always

opposite.)

 The simplest way to implement this is to have the UTILITY function return a

vector of utilities. Now we have to consider nonterminal states.

 Consider the node marked X in the game tree shown in Figure. In that state, player

C chooses what to do. The two choices lead to terminal states with utility vectors

(vA =1, vB =2, vC =6) and (vA =4, vB =2, vC =3). Since 6 is bigger than 3, C

should choose the first move. This means that if state X is reached, subsequent

play will lead to a terminal state with utilities (vA =1, vB =2, vC =6). Hence, the

backed-up value of X is this vector. The backed-up value of a node n is always the

utility vector of the successor state with the highest value for the player choosing

at n.

 Anyone who plays multiplayer games, such as Diplomacy, quickly becomes

aware that much more is going on than in two-player games. Multiplayer games

usually involve alliances, whether formal or informal, among the players.

Alliances are made and broken as the game proceeds. Strategies for each player in

MUQuestionPapers.com

a multiplayer game? It turns out that they can be. For example, suppose A and B

are in weak positions and C is in a stronger position. Then it is often optimal for

both A and B to attack C rather than each other, lest C destroy each of them

individually. In this way, collaboration emerges from purely selfish behaviour.

 If the game is not zero-sum, then collaboration can also occur with just two

players. Suppose, for example, that there is a terminal state with utilities _vA

=1000, vB =1000_ and that 1000 is the highest possible utility for each player.

Then the optimal strategy is for both players to do everything possible to reach

this state—that is, the players will automatically cooperate to achieve a mutually

desirable goal.

The first three plies of a game tree with three players (A, B, C). Each node is labelled with

values from the viewpoint of each player. The best move is marked at the root.

Q.3 b) Explain in brief about resolution theorem. (5)

I. The process of forming an inferred clause or resolving from the parent clauses is

called resolution.

II. This method demonstrates that the theorem being false causes an inconsistency with

the axioms, hence the theorem must have been true all along. It uses only one rule of

deduction, used to combine two parent clauses into a resolved clause.

III. We can express the full resolution rule of inference concisely using 'big ' notation:

The 'big ' is just a more concise way of writing clauses, where underneath the V we

specify a set of indices for the literals L. For example, if A = {1,2,7} then the first

parent clause is L1 L2 L7. (We can use a similar 'big ' notation to express

conjunctions.) The rule resolves literals Pj (a negative literal) and Pk (a positive

literal). We just remove j and k from the set of indices to get the resolved clauses.

MUQuestionPapers.com

IV. We repreatedly resolve clauses until eventually two sentences resolve together to give

the empty clause, which contains no literals.

 Initial State: A knowledge base (KB) consisting of negated theorem and

axioms in CNF.

 Operators: The full resolution rule of inference picks two sentences from KB

and adds a new sentence.

 Goal Test: Does KB contain False?

V. Illustrate the concept of a resolution search space with the simple example from

Aristotle we've seen before. Apparently, all men are mortal and Socrates was a man.

Given these words of wisdom, we want to prove that Socrates is mortal. We saw how

this could be achieved using the Modus Ponens rule, and it is instructive to use

Resolution to prove this as well.

 The initial KB (including the negated theorem) in CNF is:

1) is_man(socrates)

2) ¬is_man(X) is_mortal(X)

3) ¬is_mortal(socrates)

 We can apply resolution to get TWO different solutions. The first alternative is that

we combine (1) and (2) to get the state A:

1) is_man(socrates)

2) ¬is_man(X) is_mortal(X)

3) ¬is_mortal(socrates)

4) is_mortal(socrates)

 Then combine (3) and (4) to get the state B:

1) is_man(socrates)

2) ¬is_man(X) is_mortal(X)

3) ¬is_mortal(socrates)

4) is_mortal(socrates)

5) False

 Alternatively, we could initially combine (2) and (3) to get the state C:

1) is_man(socrates)

2) ¬is_man(X) is_mortal(X)

3) ¬is_mortal(socrates)

4) ¬is_man(socrates)

 We then resolve again to get state D:

1) is_man(socrates)

2) ¬is_man(X) is_mortal(X)

3) ¬is_mortal(socrates)

MUQuestionPapers.com

4) ¬is_man(socrates)

5) False

 So, we have a search space with two alternative paths to a solution: Initial --> A --> B

and Initial --> C --> D.

VI. Instead, it is often more convenient to visualise the developing proof. On the top line

we can write the clause of our initial KB, and draw lines from the two parent clauses

to the new clause, indicating what substitution was required, if any. Repeating this

process for each step we get a proof tree. Here's the finished proof tree for the path

Initial --> A --> B in our example above:

An here's the proof tree for the alternative path Initial --> C --> D:

VII. Complex proofs require a bit effort to lay out, and it is ususally best not to write out

all the initial clauses on the top line to begin with, but rather introduce them into the

tree as they are required.

VIII. Resolution proof trees make it easier to recontruct a proof. Considering the latter tree,

we can read the proof by working backwards from False. We could read the proof to

Aristotle thus:

MUQuestionPapers.com

IX. "You said that all men were mortal. That means that for all things X, either X is not a

man, or X is mortal [CNF step]. If we assume that Socrates is not mortal, then, given

your previous statement, this means Socrates is not a man [first resolution step]. But

you said that Socrates is a man, which means that our assumption was false [second

resolution step], so Socrates must be mortal."

X. We see that, even in this simple case, it is difficult to translate the resolution proof

into a human readable one. Due to the popularity of resolution theorem proving, and

the difficulty with which humans read the output from the provers, there have been

some projects to translate resolution proofs into a more human readable format. As an

exercise, generate the proof you would give to Aristotle from the first proof tree.

XI. In the slides accompanying these notes is an example taken from Russell and Norvig

about a cat called Tuna being killed by Curiosity. We will work through this example

in the lecture.

Q.3 c) Write a note on Kriegspiel’s Partially observable chess. (5)

I. In deterministic partially observable games, uncertainty about the state of the board

arises entirely from lack of access to the choices made by the opponent. This class

includes children’s games such as Battleships (where each player’s ships are placed in

locations hidden from the opponent but do not move) and Stratego (where piece

locations are known but piece types are hidden). We will examine the game of

Kriegspiel, a partially observable variant of chess in which pieces can move but are

completely invisible to the opponent.

II. The rules of Kriegspiel are as follows: White and Black each see a board containing

only their own pieces. A referee, who can see all the pieces, adjudicates the game and

periodically makes announcements that are heard by both players. On his turn, White

proposes to the referee any move that would be legal if there were no black pieces. If

the move is in fact not legal (because of the black pieces), the referee announces

“illegal.” In this case, White may keep proposing moves until a legal one is found—

and learns more about the location of Black’s pieces in the process. Once a legal

move is proposed, the referee announces one or more of the following: “Capture on

square X” if there is a capture, and “Check by D” if the black king is in check, where

D is the direction of the check, and can be one of “Knight,” “Rank,” “File,” “Long

diagonal,” or “Short diagonal.” (In case of discovered check, the referee may make

two “Check” announcements.) If Black is checkmated or stalemated, the referee says

so; otherwise, it is Black’s turn to move.

III. Kriegspiel may seem terrifyingly impossible, but humans manage it quite well and

computer programs are beginning to catch up. In Figure —the set of all logically

possible board states given the complete history of percepts to date. Initially, White’s

belief state is a singleton because Black’s pieces haven’t moved yet. After White

MUQuestionPapers.com

makes a move and Black responds, White’s belief state contains 20 positions because

Black has 20 replies to any White move.

IV. Given a current belief state, White may ask, “Can I win the game?” For a partially

observable game, the notion of a strategy is altered; instead of specifying a move to

make for each possible move the opponent might make, we need a move for every

possible percept sequence that might be received. For Kriegspiel, a winning strategy,

or guaranteed checkmate, is one that, for each possible percept sequence, leads to an

actual checkmate for every possible board state in the current belief state, regardless

of how the opponent moves. With this definition, the opponent’s belief state is

irrelevant—the strategy has to work even if the opponent can see all the pieces. This

greatly simplifies the computation. Figure shows part of a guaranteed checkmate for

the KRK (king and rook against king) endgame. In this case, Black has just one piece

(the king), so a belief state for White can be shown in a single board by marking each

possible position of the Black king.

Part of a guaranteed checkmate in the KRK endgame, shown on a reduced board. In

the initial belief state, Black’s king is in one of three possible locations. By a

combination of probing moves, the strategy narrows this down to one. Completion of

the checkmate is left as an exercise.

V. The general AND-OR search algorithm can be applied to the belief-state space to find

guaranteed checkmates, The incremental belief-state algorithm mentioned in that

section often finds midgame checkmates up to depth 9—probably well beyond the

abilities of human players.

MUQuestionPapers.com

VI. In addition to guaranteed checkmates, Kriegspiel admits an entirely new concept that

makes no sense in fully observable games: probabilistic checkmate. Such checkmates

are still required to work in every board state in the belief state; they are probabilistic

with respect to randomization of the winning player’s moves. To get the basic idea,

consider the problem of finding a lone black king using just the white king. Simply by

moving randomly, the white king will eventually bump into the black king even if the

latter tries to avoid this fate, since Black cannot keep guessing the right evasive

moves indefinitely. In the terminology of probability theory, detection occurs with

probability 1. The KBNK endgame—king, bishop and knight against king—is won in

this sense; White presents Black with an infinite random sequence of choices, for one

of which Black will guess incorrectly and reveal his position, leading to checkmate.

The KBBK endgame, on the other hand, is won with probability 1 – E.

VII. White can force a win only by leaving one of his bishops unprotected for one move. If

Black happens to be in the right place and captures the bishop (a move that would lose

if the bishops are protected), the game is drawn. White can choose to make the risky

move at some randomly chosen point in the middle of a very long sequence, thus

reducing _ to an arbitrarily small constant, but cannot reduce _ to zero.

VIII. It is quite rare that a guaranteed or probabilistic checkmate can be found within any

reasonable depth, except in the endgame. Sometimes a checkmate strategy works for

some of the board states in the current belief state but not others. Trying such a

strategy may succeed, leading to an accidental checkmate—accidental in the sense

that White could not know that it would be checkmate—if Black’s pieces happen to

be in the right places. (Most checkmates in games between humans are of this

accidental nature.) This idea leads naturally to the question of how likely it is that a

given strategy will win, which leads in turn to the question of how likely it is that each

board state in the current belief state is the true board state.

IX. One’s first inclination might be to propose that all board states in the current belief

state are equally likely—but this can’t be right. Consider, for example, White’s belief

state after Black’s first move of the game. By definition (assuming that Black plays

optimally), Black must have played an optimal move, so all board states resulting

from suboptimal moves ought to be assigned zero probability. This argument is not

quite right either, because each player’s goal is not just to move pieces to the right

squares but also to minimize the information that the opponent has about their

location. Playing any predictable “optimal” strategy provides the opponent with

information. Hence, optimal play in partially observable games requires a willingness

to play somewhat randomly. (This is why restaurant hygiene inspectors do random

inspection visits.) This means occasionally selecting moves that may seem

“intrinsically” weak—but they gain strength from their very unpredictability, because

the opponent is unlikely to have prepared any defense against them.

X. From these considerations, it seems that the probabilities associated with the board

states in the current belief state can only be calculated given an optimal randomized

strategy; in turn, computing that strategy seems to require knowing the probabilities

of the various states the board might be in. This conundrum can be resolved by

MUQuestionPapers.com

adopting the game theoretic notion of an equilibrium solution. An equilibrium

specifies an optimal randomized strategy for each player. Computing equilibria is

prohibitively expensive, however, even for small games, and is out of the question for

Kriegspiel. At present, the design of effective algorithms for general Kriegspiel play

is an open research topic. Most systems perform bounded-depth lookahead in their

own belief state space, ignoring the opponent’s belief state. Evaluation functions

resemble those for the observable game but include a component for the size of the

belief state—smaller is better!

Q.3 d) Explain in brief about knowledge base agent. (5)

I. Knowledge is the basic element for a human brain to know and understand the things

logically. When a person becomes knowledgeable about something, he is able to do

that thing in a better way. In AI, the agents which copy such an element of human

beings are known as knowledge-based agents.

II. The central component of a knowledge-based agent is its knowledge base, or KB. A

knowledge base is a set of sentences. (Here “sentence” is used as a technical term. It

is related but not identical to the sentences of English and other natural languages.)

Each sentence is expressed in a language called a knowledge representation

language and represents some assertion about the world. Sometimes we dignify a

sentence with the name axiom, when the sentence is taken as given without being

derived from other sentences.

III. There must be a way to add new sentences to the knowledge base and a way to query

what is known. The standard names for these operations are TELL and ASK,

respectively.

IV. Both operations may involve inference—that is, deriving new sentences from old.

Inference must obey the requirement that when one ASKs a question of the

knowledge base, the answer should follow from what has been told (or TELLed) to

the knowledge base previously. Later in this chapter, we will be more precise about

the crucial word “follow.” For now, take it to mean that the inference process should

not make things up as it goes along.

V. The agent maintains a knowledge base, KB, which may initially contain some

background knowledge.

VI. Each time the agent program is called, it does three things. First, it TELLs the

knowledge base what it perceives. Second, it ASKs the knowledge base what action it

should perform. In the process of answering this query, extensive reasoning may be

done about the current state of the world, about the outcomes of possible action

sequences, and so on. Third, the agent program TELLs the knowledge base which

action was chosen, and the agent executes the action.

VII. Knowledge level: - where we need specify only what the agent knows and what its

goals are, in order to fix its behaviour. For example, an automated taxi might have the

MUQuestionPapers.com

goal of taking a passenger from San Francisco to Marin County and might know that

the Golden Gate Bridge is the only link between the two locations. Then we can

expect it to cross the Golden Gate Bridge because it knows that that will achieve its

goal.

VIII. Implementation level: - Notice that this analysis is independent of how the taxi

works at the implementation level. It doesn’t matter whether its geographical

knowledge is implemented as linked lists or pixel maps, or whether it reasons by

manipulating strings of symbols stored in registers or by propagating noisy signals in

a network of neurons.

IX. Example of knowledge-based agents is wumpus world.

X. The Wumpus world is a simple world example to illustrate the worth of a knowledge-

based agent and to represent knowledge representation. It was inspired by a video

game Hunt the Wumpus by Gregory Yob in 1973.

XI. The Wumpus world is a cave which has 4/4 rooms connected with passageways. So

there are total 16 rooms which are connected with each other. We have a knowledge-

based agent who will go forward in this world. The cave has a room with a beast which

is called Wumpus, who eats anyone who enters the room. The Wumpus can be shot by

the agent, but the agent has a single arrow. In the Wumpus world, there are some Pits

rooms which are bottomless, and if agent falls in Pits, then he will be stuck there

forever. The exciting thing with this cave is that in one room there is a possibility of

finding a heap of gold. So the agent goal is to find the gold and climb out the cave

without fallen into Pits or eaten by Wumpus. The agent will get a reward if he comes

out with gold, and he will get a penalty if eaten by Wumpus or falls in the pit.

Q.3 e) Explain the syntax for propositional logic. (5)

 The syntax of propositional logic defines the allowable sentences. The atomic sentences

consist of a single proposition symbol. Each such symbol stands for a proposition that can

be true or false.

 We use symbols that start with an uppercase letter and may contain other letters or

subscripts, for example: P, Q, R, W1, 3 and North. The names are arbitrary but are often

chosen to have some mnemonic value—we use W1, 3 to stand for the proposition that the

wumpus is in [1, 3]. (Remember that symbols such as W1, 3 are atomic, i.e., W, 1, and 3

are not meaningful parts of the symbol.) There are two proposition symbols with fixed

meanings: True is the always-true proposition and False is the always-false proposition.

 Complex sentences are constructed from simpler sentences, using parentheses and logical

connectives. There are five connectives in common use:

1) ¬ (not):-

A sentence such as ¬W1, 3 is called the negation of W1, 3. A literal is either an

atomic sentence (a positive literal) or a negated atomic sentence (a negative literal).

Example: - ¬A

MUQuestionPapers.com

2) ∧ (and):-

A sentence whose main connective is ∧, such as W1, 3 ∧ P3, 1, is called a

conjunction; its parts are the conjuncts. (The ∧ looks like an “A” for “And.”)

Example: - A∧B

3) ∨ (or):-

A sentence using ∨, such as (W1, 3∧P3, 1) ∨W2, 2, is a disjunction of the disjuncts

(W1, 3 ∧ P3, 1) and W2, 2. (Historically, the ∨ comes from the Latin “vel,” which

means “or.” For most people, it is easier to remember ∨ as an upside-down ∧.)

Example: - A∨B

4) ⇒ (implies):-

A sentence such as (W1, 3∧P3, 1) ⇒ ¬W2, 2 is called an implication (or conditional).

Its premise or antecedent is (W1, 3 ∧P3, 1), and its conclusion or consequent is ¬W2,

2. Implications are also known as rules or if–then statements. The implication RULES

symbol is sometimes written as ⊃ or →.

Example: - A⇒B

5) ⇔ (if and only if):-

The sentence W1, 3 ⇔ ￢W2, 2 is a biconditional. In other way write this as ≡.

Example:- A⇔B

A B A∧B A∨B ¬A A⇒B A⇔B

False False F F T T T

False True F T T T F

True False F T F F F

True True T T F T T

Q.3 f) Write a note on Wumpus world problem. (5)

I. The wumpus world is a cave consisting of rooms connected by passageways.

Lurking somewhere in the cave is the terrible wumpus, a beast that eats anyone who

enters its room. The wumpus can be shot by an agent, but the agent has only one

arrow. Some rooms contain bottomless pits that will trap anyone who wanders into

these rooms (except for the wumpus, which is too big to fall in). The only mitigating

feature of this bleak environment is the possibility of finding a heap of gold. Although

the wumpus world is rather tame by modern computer game standards, it illustrates

some important points about intelligence.

MUQuestionPapers.com

II. A sample wumpus world is shown in Figure. The precise definition of the task

environment is given, by the PEAS description:

 Performance measure: +1000 for climbing out of the cave with the gold, –

1000 for falling into a pit or being eaten by the wumpus, –1 for each action

taken and –10 for using up the arrow. The game ends either when the agent

dies or when the agent climbs out of the cave.

 Environment: A 4×4 grid of rooms. The agent always starts in the square

labelled [1, 1], facing to the right. The locations of the gold and the wumpus

are chosen randomly, with a uniform distribution, from the squares other than

the start square. In addition, each square other than the start can be a pit, with

probability 0.2.

 Actuators: The agent can move Forward, TurnLeft by 90◦, or TurnRight by

90◦. The agent dies a miserable death if it enters a square containing a pit or a

live wumpus. (It is safe, albeit smelly, to enter a square with a dead wumpus.)

If an agent tries to move forward and bumps into a wall, then the agent does

not move. The action Grab can be used to pick up the gold if it is in the same

square as the agent. The action Shoot can be used to fire an arrow in a straight

line in the direction the agent is facing. The arrow continues until it either hits

(and hence kills) the wumpus or hits a wall. The agent has only one arrow, so

only the first Shoot action has any effect. Finally, the action Climb can be

used to climb out of the cave, but only from square [1, 1].

 Sensors: The agent has five sensors, each of which gives a single bit of

information:

– In the square containing the wumpus and in the directly (not diagonally)

adjacent squares, the agent will perceive a Stench.

– In the squares directly adjacent to a pit, the agent will perceive a Breeze.

– In the square where the gold is, the agent will perceive a Glitter.

– When an agent walks into a wall, it will perceive a Bump.

– When the wumpus is killed, it emits a woeful Scream that can be perceived

anywhere in the cave.

MUQuestionPapers.com

A typical wumpus world. The agent is in the bottom left corner, facing right.

III. The percepts will be given to the agent program in the form of a list of five symbols;

for example, if there is a stench and a breeze, but no glitter, bump, or scream, the

agent program will get [Stench, Breeze, None, None, None]. The wumpus

environment along the various dimensions. Clearly, it is discrete, static, and single-

agent. (The wumpus doesn’t move, fortunately.) It is sequential, because rewards may

come only after many actions are taken. It is partially observable, because some

aspects of the state are not directly perceivable: the agent’s location, the wumpus’s

state of health, and the availability of an arrow.

IV. As for the locations of the pits and the wumpus: we could treat them as unobserved

parts of the state that happen to be immutable—in which case, the transition model for

the environment is completely known; or we could say that the transition model itself

is unknown because the agent doesn’t know which Forward actions are fatal—in

which case, discovering the locations of pits and wumpus completes the agent’s

knowledge of the transition model.

Exploring the problem of wumpus world:

I. We use an informal knowledge representation language consisting of writing down

symbols in a grid (as in Figures 1 and 2).The agent’s initial knowledge base contains

the rules of the environment, as described previously; in particular, it knows that it is

in [1, 1] and that [1, 1] is a safe square; we denote that with an “A” and “OK,”

respectively, in square [1, 1].

II. The first percept is [None, None, None, None, None], from which the agent can

conclude that its neighboring squares, [1, 2] and [2, 1], are free of dangers—they are

OK. Figure 1(a) shows the agent’s state of knowledge at this point. A cautious agent

will move only into a square that it knows to be OK. Let us suppose the agent decides

to move forward to [2, 1]. The agent perceives a breeze (denoted by “B”) in [2, 1], so

there must be a pit in a neighboring square. The pit cannot be in [1, 1], by the rules of

MUQuestionPapers.com

the game, so there must be a pit in [2, 2] or [3, 1] or both. The notation “P?” in Figure

1(b) indicates a possible pit in those squares. At this point, there is only one known

square that is OK and that has not yet been visited. So the prudent agent will turn

around, go back to [1, 1], and then proceed to [1, 2].

1(a) 1(b)

The first step taken by the agent in the wumpus world. (a) The initial situation, after

percept [None, None, None, None, None]. (b) After one move, with percept [None,

Breeze, None, None, None].

 2(a) 2(b)

Two later stages in the progress of the agent. (a) After the third move, with percept

[Stench, None, None, None, None]. (b) After the fifth move, with percept [Stench,

Breeze, Glitter, None, None].

III. The agent perceives a stench in [1, 2], resulting in the state of knowledge shown in

Figure 2(a). The stench in [1, 2] means that there must be a wumpus nearby. But the

wumpus cannot be in [1, 1], by the rules of the game, and it cannot be in [2, 2] (or the

agent would have detected a stench when it was in [2, 1]). Therefore, the agent can

infer that the wumpus is in [1, 3]. The notation W! Indicates this inference. Moreover,

MUQuestionPapers.com

the lack of a breeze in [1, 2] implies that there is no pit in [2, 2]. Yet the agent has

already inferred that there must be a pit in either [2, 2] or [3, 1], so this means it must

be in [3, 1]. This is a fairly difficult inference, because it combines knowledge gained

at different times in different places and relies on the lack of a percept to make one

crucial step.

IV. The agent has now proved to itself that there is neither a pit nor a wumpus in [2, 2], so

it is OK to move there. We do not show the agent’s state of knowledge at [2, 2]; we

just assume that the agent turns and moves to [2, 3], giving us Figure 2(b). In [2, 3],

the agent detects a glitter, so it should grab the gold and then return home.

V. Note that in each case for which the agent draws a conclusion from the available

information, that conclusion is guaranteed to be correct if the available information is

correct.

VI. This is a fundamental property of logical reasoning. In the rest of this chapter, we

describe how to build logical agents that can represent information and draw

conclusions such as those described in the preceding paragraphs.

Q.4 a) What is first order logic? Discuss the different elements used in first order

logic. (5)

I. First-order logic is another way of knowledge representation in artificial intelligence.

It is an extension to propositional logic. FOL is sufficiently expressive to represent the

natural language statements in a concise way.

II. First-order logic is also known as Predicate logic or First-order predicate logic. First-

order logic is a powerful language that develops information about the objects in a

more easy way and can also express the relationship between those objects.

III. First-order logic (like natural language) does not only assume that the world contains

facts like propositional logic but also assumes the following things in the world:

o Objects: A, B, people, numbers, colors, wars, theories, squares, pits,

wumpus,…

o Relations: It can be unary relation such as: red, round, is adjacent, or n-any

relation such as: the sister of, brother of, has color, comes between

o Function: Father of, best friend, third inning of, end of,…

IV. As a natural language, first-order logic also has two main parts:

o Syntax

o Semantics

V. Basic Elements of First-order logic:

o Following are the basic elements of FOL syntax:

MUQuestionPapers.com

Constant 1, 2, A, John, Mumbai, cat,....

Variables x, y, z, a, b,....

Predicates Brother, Father, >,....

Function sqrt, LeftLegOf,

Connectives ∧, ∨, ¬, ⇒, ⇔

Equality ==

Quantifier ∀, ∃

VI. Atomic sentences:

o Atomic sentences are the most basic sentences of first-order logic. These sentences

are formed from a predicate symbol followed by a parenthesis with a sequence of

terms.

o We can represent atomic sentences as Predicate (term1, term2,, term n).

o Example: Ravi and Ajay are brothers: => Brothers(Ravi, Ajay).

 Chinky is a cat: => cat (Chinky).

VII. Complex Sentences:

o Complex sentences are made by combining atomic sentences using connectives.

VIII. First-order logic statements can be divided into two parts:

o Subject: Subject is the main part of the statement.

o Predicate: A predicate can be defined as a relation, which binds two atoms together

in a statement.

Consider the statement: "x is an integer.", it consists of two parts, the first part x is

the subject of the statement and second part "is an integer," is known as a predicate.

MUQuestionPapers.com

Q.4 b) Explain universal and existential quantifier with suitable example. (5)

 A logical quantifier that asserts all values of a given variable in a formula.

 First-order logic contains two standard quantifiers, called universal and existential.

1. Universal quantifier

 The symbol ∀ is called the universal quantifier.

 It expresses the fact that, in a particular universe of discourse, all objects have a

particular property.

o ∀x: means:

o For all objects xx, it is true that ...

 ∀ is usually pronounced “For all . . .”. (Remember that the upside-down A stands for

“all.”)

 That is:

 Thus, the sentence says, “For all x, if x is a king, then x is a person.” The symbol x is

called a variable. By convention, variables are lowercase letters. A variable is a term

all by itself, and as such can also serve as the argument of a function—for example,

LeftLeg(x). A term with no variables is called a ground term.

 The universal quantifier can be considered as a repeated conjunction:

 Suppose our universe of discourse consists of the objects X1, X2, X3…X1, X2,

X3… and so on.

2. Existential quantifier

 The symbol ∃ is called the existential quantifier.

 It expresses the fact that, in a particular universe of discourse, there exists (at least

one) object having a particular property.

That is: ∃x means: There exists at least one object xx such that ...

 for example, that King John has a crown on his head, we write

∃ x Crown(x) ∧ OnHead(x, John) .

 ∃x is pronounced “There exists an x such that . . .” or “For some x . . .”

Q.4 c) Convert the following natural sentences into FOL form. (5)

i. Virat is cricketer.

Virat(cricketer)

https://proofwiki.org/wiki/Definition:Universe_of_Discourse
https://proofwiki.org/wiki/Definition:Object
https://proofwiki.org/wiki/Definition:Conjunction
https://proofwiki.org/wiki/Definition:Universe_of_Discourse
https://proofwiki.org/wiki/Definition:Object
https://proofwiki.org/wiki/Definition:Universe_of_Discourse

MUQuestionPapers.com

ii. All batsman are cricketers.

For-all(x): batsman(x) -> cricketer(x)

iii. Everybody speaks some language.

For-all(x) Exist(y): Person(x) V language(y) -> speaks(x,y)

iv. Every car has wheel.

(forall (x) (if (Car x) (exists (y) wheel-of (x y)))

v. Everybody loves somebody some time.

(forall (x) (exists (y) -> loves-sometime(x y)))

Q.4 d) What is knowledge engineering? Write the steps for its execution. (5)

I. Knowledge engineering is a field of artificial intelligence (AI) that tries to emulate the

judgment and behaviour of a human expert in a given field.

II. Knowledge engineering is the technology behind the creation of expert systems to

assist with issues related to their programmed field of knowledge. Expert systems

involve a large and expandable knowledge base integrated with a rules engine that

specifies how to apply information in the knowledge base to each particular situation.

III. The systems may also incorporate machine learning so that they can learn from

experience in the same way that humans do. Expert systems are used in various fields

including healthcare, customer service, financial services, manufacturing and the law.

IV. Using algorithms to emulate the thought patterns of a subject matter expert,

knowledge engineering tries to take on questions and issues as a human expert would.

Looking at the structure of a task or decision, knowledge engineering studies how the

conclusion is reached.

V. A library of problem-solving methods and a body of collateral knowledge are used to

approach the issue or question. The amount of collateral knowledge can be very large.

Depending on the task and the knowledge that is drawn on, the virtual expert may

assist with troubleshooting, solving issues, assisting a human or acting as a virtual

agent.

VI. Scientists originally attempted knowledge engineering by trying to emulate real

experts. Using the virtual expert was supposed to get you the same answer as you

would get from a human expert. This approach was called the transfer approach.

However, the expertise that a specialist required to answer questions or respond

to issues posed to it needed too much collateral knowledge: information that is not

central to the given issue but still applied to make judgments.

https://searchenterpriseai.techtarget.com/definition/AI-Artificial-Intelligence
https://searchcustomerexperience.techtarget.com/definition/virtual-agent
https://whatis.techtarget.com/definition/knowledge-base
https://whatis.techtarget.com/definition/engine
https://searchcio.techtarget.com/definition/knowledge
https://searchenterpriseai.techtarget.com/definition/machine-learning-ML
https://whatis.techtarget.com/definition/algorithm
https://whatis.techtarget.com/definition/troubleshooting

MUQuestionPapers.com

VII. A surprising amount of collateral knowledge is required to enable analogous

reasoning and nonlinear thought. Currently, a modelling approach is used where the

same knowledge and process need not necessarily be used to reach the same

conclusion for a given question or issue. Eventually, it is expected that knowledge

engineering will produce a specialist that surpasses the abilities of its human

counterparts.

Steps for knowledge engineering execution

Knowledge engineering projects vary widely in content, scope, and difficulty, but all such

projects include the following steps:

I. Identify the task.

 The knowledge engineer must delineate the range of questions that the

knowledge base will support and the kinds of facts that will be available for

each specific problem instance.

 For example, does the wumpus knowledge base need to be able to choose

actions or is it required to answer questions only about the contents of the

environment? Will the sensor facts include the current location? The task will

determine what knowledge must be represented in order to connect problem

instances to answers.

 This step is analogous to the PEAS process for designing agents.

II. Assemble the relevant knowledge.

 The knowledge engineer might already be an expert in the domain, or might

need to work with real experts to extract what they know—a process called

knowledge acquisition.

 At this stage, the knowledge is not represented formally. The idea is to

understand the scope of the knowledge base, as determined by the task, and to

understand how the domain actually works.

 For the wumpus world, which is defined by an artificial set of rules, the

relevant knowledge is easy to identify.

 For real domains, the issue of relevance can be quite difficult—for example, a

system for simulating VLSI designs might or might not need to take into

account stray capacitances and skin effects.

III. Decide on a vocabulary of predicates, functions, and constants.

 That is, translate the important domain-level concepts into logic-level names.

This involves many questions of knowledge-engineering style.

 Like programming style, this can have a significant impact on the eventual

success of the project. For example, should pits be represented by objects or

by a unary predicate on squares? Should the agent’s orientation be a function

or a predicate? Should the wumpus’s location depend on time? Once the

MUQuestionPapers.com

choices have been made, the result is a vocabulary that is known as the

ontology of the domain.

 The word ontology means a particular theory of the nature of being or

existence.

 The ontology determines what kinds of things exist, but does not determine

their specific properties and interrelationships.

IV. Encode general knowledge about the domain.

 The knowledge engineer writes down the axioms for all the vocabulary terms.

This pins down (to the extent possible) the meaning of the terms, enabling the

expert to check the content.

 Often, this step reveals misconceptions or gaps in the vocabulary that must be

fixed by returning to step 3 and iterating through the process.

V. Encode a description of the specific problem instance.

 If the ontology is well thought out, this step will be easy. It will involve

writing simple atomic sentences about instances of concepts that are already

part of the ontology.

 For a logical agent, problem instances are supplied by the sensors, whereas a

“disembodied” knowledge base is supplied with additional sentences in the

same way that traditional programs are supplied with input data.

VI. Pose queries to the inference procedure and get answers.

 This is where the reward is: we can let the inference procedure operate on the

axioms and problem-specific facts to derive the facts we are interested in

knowing.

 Thus, we avoid the need for writing an application-specific solution algorithm.

VII. Debug the knowledge base.

 Alas, the answers to queries will seldom be correct on the first try. More

precisely, the answers will be correct for the knowledge base as written,

assuming that the inference procedure is sound, but they will not be the ones

that the user is expecting.

 For example, if an axiom is missing, some queries will not be answerable from

the knowledge base. A considerable debugging process could ensue.

 Missing axioms or axioms that are too weak can be easily identified by

noticing places where the chain of reasoning stops unexpectedly.

Q.4 e) Give comparison between forward chaining and backward chaining. (5)

MUQuestionPapers.com

Sr.

No.

Forward chaining Backward chaining

I. Forward chaining starts from known facts

and applies inference rule to extract more

data unit it reaches to the goal.

Backward chaining starts from the goal

and works backward through inference

rules to find the required facts that

support the goal.

II. It is a bottom-up approach It is a top-down approach

III. Forward chaining is known as data-

driven inference technique as we reach to

the goal using the available data.

Backward chaining is known as goal-

driven technique as we start from the goal

and divide into sub-goal to extract the

facts.

IV. Forward chaining reasoning applies a

breadth-first search strategy.

Backward chaining reasoning applies a

depth-first search strategy.

V. Forward chaining tests for all the

available rules.

Backward chaining only tests for few

required rules.

VI. Forward chaining is suitable for the

planning, monitoring, control, and

interpretation application.

Backward chaining is suitable for

diagnostic, prescription, and debugging

application.

VII. Forward chaining can generate an infinite

number of possible conclusions.

Backward chaining generates a finite

number of possible conclusions.

VIII. It operates in the forward direction. It operates in the backward direction.

IX. Forward chaining is aimed for any

conclusion.

Backward chaining is only aimed for the

required data.

Q.4 f) Explain in brief about unification. (5)

I. Lifted inference rules require finding substitutions that make different logical

expressions look identical. This process is called unification and is a key component

of all first-order inference algorithms.

II. The UNIFY algorithm takes two sentences and returns a unifier for them if one

exists:

MUQuestionPapers.com

 UNIFY(p, q)=θ where SUBST(θ, p)= SUBST(θ, q) .

III. Let us look at some examples of how UNIFY should behave. Suppose we have a

query AskVars(Knows(John, x)): whom does John know? Answers to this query can

be found by finding all sentences in the knowledge base that unify with Knows(John,

x). Here are the results of unification with four different sentences that might be in

the knowledge base:

 UNIFY(Knows(John, x), Knows(John, Jane)) = {x/Jane}

 UNIFY(Knows(John, x), Knows(y, Bill)) = {x/Bill, y/John}

 UNIFY(Knows(John, x), Knows(y,Mother (y))) = {y/John, x/Mother (John)}

 UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail .

IV. The last unification fails because x cannot take on the values John and Elizabeth at

the same time. Now, remember that Knows(x, Elizabeth) means “Everyone knows

Elizabeth,” so we should be able to infer that John knows Elizabeth. The problem

arises only because the two sentences happen to use the same variable name, x. The

problem can be avoided by standardizing apart one of the two sentences being

unified, which means renaming its variables to avoid name clashes. For example, we

can rename x in Knows(x, Elizabeth) to x17 (a new variable name) without changing

its meaning. Now the unification will work:

 UNIFY(Knows(John, x), Knows(x17, Elizabeth)) = {x/Elizabeth, x17/John} .

V. An algorithm for computing most general unifiers is shown in Figure. The process is

simple: recursively explore the two expressions simultaneously “side by side,”

building up a unifier along the way, but failing if two corresponding points in the

structures do not match.

VI. There is one expensive step: when matching a variable against a complex term, one

must check whether the variable itself occurs inside the term; if it does, the match

fails because no consistent unifier can be constructed. For example, S(x) can’t unify

with S(S(x)). This so called occur check makes the complexity of the entire

algorithm quadratic in the size of the expressions being unified. Some systems,

including all logic programming systems, simply omit the occur check and

sometimes make unsound inferences as a result; other systems use more complex

algorithms with linear-time complexity.

function UNIFY(x , y, θ) returns a substitution to make x and y identical

 inputs: x , a variable, constant, list, or compound expression

 y, a variable, constant, list, or compound expression

 θ, the substitution built up so far (optional, defaults to empty)

 if θ = failure then return failure

 else if x = y then return θ

 else if VARIABLE?(x) then return UNIFY-VAR(x , y, θ)

 else if VARIABLE?(y) then return UNIFY-VAR(y, x , θ)

 else if COMPOUND?(x) and COMPOUND?(y) then

 return UNIFY(x.ARGS, y.ARGS, UNIFY(x.OP, y.OP, θ))

 else if LIST?(x) and LIST?(y) then

MUQuestionPapers.com

 return UNIFY(x .REST, y.REST, UNIFY(x .FIRST, y.FIRST, θ))

 else return failure

function UNIFY-VAR(var, x , θ) returns a substitution

 if {var/val} ∈ θ then return UNIFY(val , x , θ)

 else if {x/val} ∈ θ then return UNIFY(var, val , θ)

 else if OCCUR-CHECK?(var, x) then return failure

 else return add {var/x } to θ

The unification algorithm. The algorithm works by comparing the structures of the

inputs, element by element. The substitution è that is the argument to UNIFY is built up

along the way and is used to make sure that later comparisons are consistent with

bindings that were established earlier. In a compound expression such as F(A,B), the

OP field picks out the function symbol F and the ARGS field picks out the argument list

(A,B).

Q.5 a) What is planning? Explain STRIPS operators with suitable example. (5)

Planning

I. Artificial Intelligence is a critical technology in the future. Whether it is intelligent

robots or self-driving cars or smart cities, they will all use different aspects of

Artificial Intelligence!!! But to create any such AI project, Planning is very important.

So much so that Planning is a critical part of Artificial Intelligence which deals with

the actions and domains of a particular problem. Planning is considered as the

reasoning side of acting.

II. For any planning system, we need the domain description, action specification,

and goal description. A plan is assumed to be a sequence of actions and each action

has its own set of preconditions to be satisfied before performing the action and also

some effects which can be positive or negative.

III. The planning in Artificial Intelligence is about the decision making tasks performed

by the robots or computer programs to achieve a specific goal.

IV. The execution of planning is about choosing a sequence of actions with a high

likelihood to complete the specific task.

V. Planning is the fundamental management function, which involves deciding

beforehand, what is to be done, when is it to be done, how it is to be done and who is

going to do it. It is an intellectual process which lays down an organisation’s

objectives and develops various courses of action, by which the organisation can

achieve those objectives. It chalks out exactly, how to attain a specific goal.

VI. Planning is nothing but thinking before the action takes place. It helps us to take

a peep into the future and decide in advance the way to deal with the situations, which

MUQuestionPapers.com

we are going to encounter in future. It involves logical thinking and rational decision

making.

Importance of Planning

I. It helps managers to improve future performance, by establishing objectives and

selecting a course of action, for the benefit of the organisation.

II. It minimises risk and uncertainty, by looking ahead into the future.

III. It facilitates the coordination of activities. Thus, reduces overlapping among activities

and eliminates unproductive work.

IV. It states in advance, what should be done in future, so it provides direction for action.

V. It uncovers and identifies future opportunities and threats.

VI. It sets out standards for controlling. It compares actual performance with the standard

performance and efforts are made to correct the same.

STRIPS Operators

I. STRIPS Stands for STandford Research Institute Problem Solver

 Tidily arranged actions descriptions

 Restricted language (function-free literals)

 Efficient algorithms

II. States represented by:

 Conjunction of ground (function-free) atoms

 Example

 At(Home), Have(Bread)

 Closed world assumption

 Atoms that are not present are assumed to be false

 Example

 State: At(Home), Have(Bread)

 Implicitly: ¬Have(Milk),¬Have(Bananas),¬Have(Drill)

Operator description consists of:

Action name Positive literal Buy(Milk)

Precondition Conjunction of positive literals At(Shop)∧Sells(Shop,Milk)

Effect Conjunction of literals Have(Milk)

MUQuestionPapers.com

Operator schema

Operator containing variables

Operator applicability

Operator o applicable in state s if: there is substitution Subst of the free variables such that

Subst(precond(o)) ⊆ s

Example

Buy(x) is applicable in state

 At(Shop)∧Sells(Shop,Milk)∧Have(Bread)

with substitution

 Subst = { p/Shop, x/Milk }

Resulting state

 Computed from old state and literals in Subst(effect)

1. Positive literals are added to the state

2. Negative literals are removed from the state

3. All other literals remain unchanged (avoids the frame problem)

Formally s’ = (s ∪ {P | P a positive atom, P ∈ Subst(effect(o))})

 \ {P | P a positive atom, ¬P ∈ Subst(effect(o))}

Example Application of

 Drive(a,b) precond: At(a),Road(a,b) effect: At(b),¬At(a)

to state

 At(Koblenz), Road(Koblenz,Landau)

results in

 At(Landau), Road(Koblenz,Landau)

A complete set of STRIPS operators can be translated into a set of successor-state axioms

MUQuestionPapers.com

Q.5 b) Explain in brief about partially ordered plan. (5)

I. Partial-order planning is an approach to automated planning that maintains a partial

ordering between actions and only commits ordering between actions when forced to

i.e., ordering of actions is partial. Also this planning doesn't specify which action will

come out first when two actions are processed.

II. Partially ordered plans are created by a search through the space of plans rather than

through the state space.

III. By contrast, total-order planning maintains a total ordering between all actions at

every stage of planning. Given a problem in which some sequence of actions is

required in order to achieve a goal, a partial-order plan specifies all actions that

need to be taken, but specifies an ordering between actions only where necessary.

IV. Consider the following situation: a person must travel from the start to the end of an

obstacle course. This obstacle course is composed of a bridge, a see-saw and a swing-

set. The bridge must be traversed before the see-saw and swing-set are reachable.

Once reachable, the see-saw and swing-set can be traversed in any order, after which

the end is reachable. In a partial-order plan, ordering between these obstacles is

specified only when necessary. The bridge must be traversed first. Second, either the

see-saw or swing-set can be traversed. Third, the remaining obstacle can be traversed.

Then the end can be traversed. Partial-order planning relies upon the Principle of

Least Commitment for its efficiency.

V. A partial-order plan or partial plan is a plan which specifies all actions that need to

be taken, but only specifies the order between actions when necessary. It is the result

of a partial-order planner. A partial-order plan consists of four components:

 A set of actions (also known as operators).

 A partial order for the actions. It specifies the conditions about the order of

some actions.

 A set of causal links. It specifies which actions meet which preconditions of

other actions. Alternatively, a set of bindings between the variables in

actions.

 A set of open preconditions. It specifies which preconditions are not fulfilled

by any action in the partial-order plan.

VI. In order to keep the possible orders of the actions as open as possible, the set of order

conditions and causal links must be as small as possible.

VII. A plan is a solution if the set of open preconditions is empty.

VIII. A linearization of a partial order plan is a total order plan derived from the particular

partial order plan; in other words, both order plans consist of the same actions, with

https://en.wikipedia.org/wiki/Automated_planning
https://en.wikipedia.org/w/index.php?title=Principle_of_Least_Commitment&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Principle_of_Least_Commitment&action=edit&redlink=1
https://en.wikipedia.org/wiki/Partial_order

MUQuestionPapers.com

the order in the linearization being a linear extension of the partial order in the

original partial order plan.

(a) The tire problem expressed as an empty plan. (b) An incomplete partially ordered

plan for the tire problem. Boxes represent actions and arrows indicate that one action

must occur before another. (c) A complete partially-ordered solution.

IX. The search keeps adding to the plan (backtracking if necessary) until all flaws are

resolved, as in the bottom of Figure. At every step, we make the least commitment

possible to fix the flaw. For example, in adding the action Remove(Spare, Trunk) we

need to commit to having it occur before PutOn(Spare, Axle), but we make no other

commitment that places it before or after other actions. If there were a variable in the

action schema that could be left unbound, we would do so.

X. In the 1980s and 90s, partial-order planning was seen as the best way to handle

planning problems with independent subproblems—after all, it was the only approach

that explicitly represents independent branches of a plan. On the other hand, it has the

disadvantage of not having an explicit representation of states in the state-transition

model. That makes some computations cumbersome.

XI. Partial-order planners are not competitive on fully automated classical planning

problems. However, partial-order planning remains an important part of the field. For

some specific tasks, such as operations scheduling, partial-order planning with

domain specific heuristics is the technology of choice.

XII. Partial-order planning is also often used in domains where it is important for humans

to understand the plans. Operational plans for spacecraft and Mars rovers are

generated by partial-order planners and are then checked by human operators before

being uploaded to the vehicles for execution. The plan refinement approach makes it

easier for the humans to understand what the planning algorithms are doing and verify

that they are correct.

https://en.wikipedia.org/wiki/Linear_extension

MUQuestionPapers.com

Q.5 c) Explain in brief about hierarchical planning. (5)

I. Ever since the conception of Artificial Intelligence, hierarchical problem solving has

been used as a method to reduce the computational cost of planning.

II. The idea of hierarchical problem-solving, a well-accepted one, is to distinguish

between goals and actions of different degrees of importance, and solve the most

important problems first. Its main advantage derives from the fact that by

emphasizing certain activities while temporarily ignoring others, it is possible to

obtain a much smaller search space in which to find a plan.

III. As an example, suppose that in the household domain we would like to paint the

ceiling white. Initially the number of conditions to consider may be overwhelming,

ranging from the availability of various supplies, the suppliers for equipment and

tools, to the position of the agent, the ladder, and the state of the ceiling. However, we

could obtain a more manageable search space by first concentrating on whether we

have the paint, the ladder, and a brush. Once a plan is found we then consider how to

refine this plan by considering how to get to the rooms where each item is located.

The process repeats until a full-blown plan is finally found.

IV. Figure shows, how to create a hierarchical plan to travel from some source to a

destination.

Travel (Source,dest.)

Take-Flight Take-Train Take-Bus

Goto(Train,Source) Buy-Ticket(Train) Catch(Train) Leave(Train,dest.)

 Goto(counter) Request(ticket) Pay(ticket)

Hierarchical planning example

V. A Hierarchical Planner

 The intuition behind the operation of a hierarchical planner is shown in Figure In

this figure there are three levels of abstraction, an abstract level, an intermediate

level and a concrete level.

 Each dashed box represents a problem-solver at a given level.

 A planning problem is first abstracted and solved at the most abstract level. The

solution obtained at this level, an abstract plan, is taken as the input to a problem-

solver at the next level.

MUQuestionPapers.com

 The process ends when a concrete-level solution is found. In general, the

abstraction levels could range from a single level to multiple levels. The former is

identical to problem-solving without any abstraction.

Illustrating hierarchical planning

VI. Planner:-

 First identify a hierarchy of major conditions.

 Construct a plan in levels (Major steps then minor steps), so we postpone the details

to next level.

 Patch major levels as detail actions become visible.

 Finally demonstrate.

VII. Example:-

 Actions required for “Travelling to Goa”:

 Opening makemytrip.com (1)

 Finding flight (2)

 Buy Ticket (3)

 Get taxi(2)

 Reach airport(3)

 Pay-driver(1)

 Check in(1)

 Boarding plane(2)

MUQuestionPapers.com

 Reach Goa(3)

 1st level Plan :

 Buy Ticket (3), Reach airport(3), Reach Goa(3)

 2nd level Plan :

 Finding flight (2), Buy Ticket (3), Get taxi(2), Reach airport(3), Boarding

plane(2), Reach Goa(3)

 3rd level Plan (final) :

 Opening makemytrip.com (1), Finding flight (2), Buy Ticket (3), Get taxi(2),

Reach airport(3), Pay-driver(1), Check in(1), Boarding plane(2), Reach Goa(3)

Q.5 d) Write a note on mutex relation. (5)

I. A mutex relation holds between two actions at a given level if any of the following

three conditions holds:

 Inconsistent effects: one action negates an effect of the other. For example,

Eat (Cake) and the persistence of Have(Cake) have inconsistent effects

because they disagree on the effect Have(Cake).

 Interference: one of the effects of one action is the negation of a precondition

of the other. For example Eat (Cake) interferes with the persistence of

Have(Cake) by negating its precondition.

 Competing needs: one of the preconditions of one action is mutually

exclusive with a precondition of the other. For example, Bake(Cake) and Eat

(Cake) are mutex because they compete on the value of the Have(Cake)

precondition.

II. A mutex relation holds between two literals at the same level if one is the negation of

the other or if each possible pair of actions that could achieve the two literals is

mutually exclusive. This condition is called inconsistent support.

III. For example, Have(Cake) and Eaten(Cake) are mutex in S1 because the only way of

achieving Have(Cake), the persistence action, is mutex with the only way of

achieving Eaten(Cake), namely Eat (Cake).

IV. In S2 the two literals are not mutex, because there are new ways of achieving them,

such as Bake(Cake) and the persistence of Eaten(Cake), that are not mutex.

V. A planning graph is polynomial in the size of the planning problem. For a planning

problem with l literals and a actions, each Si has no more than l nodes and l^2 mutex

links, and each Ai has no more than a + l nodes (including the no-ops), (a + l)^2

mutex links, and 2(al + l) precondition and effect links. Thus, an entire graph with n

levels has a size of O(n(a + l)^2). The time to build the graph has the same

complexity.

MUQuestionPapers.com

Q.5 e) What is semantic network? Show the semantic representation with suitable

example. (5)

I. Semantic networks are an alternative to predicate logic as a form of knowledge

representation. The idea is that we can store our knowledge in the form of a graph,

with nodes representing objects in the world, and arcs representing relationships

between those objects.

II. A semantic network, or frame network is a knowledge base that

represents semantic relations between concepts in a network. It is

a directed or undirected graph consisting of vertices, which represent concepts,

and edges, which represent semantic relations between concepts, mapping or

connecting semantic fields. A semantic network may be instantiated as, for example,

a graph database or a concept map.

III. Typical standardized semantic networks are expressed as semantic triples. Semantic

networks are used in natural language processing applications such as semantic

parsing and word-sense disambiguation.

IV. The structural idea is that knowledge can be stored in the form of graphs, with nodes

representing objects in the world, and arcs representing relationships between those

objects.

 Semantic nets consist of nodes, links and link labels. In these networks

diagram, nodes appear in form of circles or ellipses or even rectangles which

represents objects such as physical objects, concepts or situations.

 Links appear as arrows to express the relationships between objects, and link

labels specify relations.

 Relationships provide the basic needed structure for organizing the

knowledge, so therefore objects and relations involved are also not needed to

be concrete.

 Semantic nets are also referred to as associative nets as the nodes are

associated with other nodes

https://en.wikipedia.org/wiki/Knowledge_base
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/Concept
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Concept
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Semantic_relationship
https://en.wikipedia.org/wiki/Semantic_field
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Concept_map
https://en.wikipedia.org/wiki/Semantic_triple
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Semantic_parsing
https://en.wikipedia.org/wiki/Semantic_parsing
https://en.wikipedia.org/wiki/Word-sense_disambiguation

MUQuestionPapers.com

A semantic network with four objects (John, Mary, 1, and 2) and four categories.

Relations are denoted by labeled links.

V. For example, Figure has a MemberOf link between Mary and FemalePersons ,

corresponding to the logical assertion Mary ∈FemalePersons ; similarly, the SisterOf

link between Mary and John corresponds to the assertion SisterOf (Mary, John). We

can connect categories using SubsetOf links, and so on. It is such fun drawing bubbles

and arrows that one can get carried away.

VI. For example, we know that persons have female persons as mothers, so can we draw a

HasMother link from Persons to FemalePersons? The answer is no, because

HasMother is a relation between a person and his or her mother, and categories do not

have mother For this reason, we have used a special notation—the double-boxed

link—in Figure This link asserts that

 ∀x x∈ Persons ⇒ [∀ y HasMother (x, y) ⇒ y ∈ FemalePersons] .

 We might also want to assert that persons have two legs—that is,

 ∀x x∈ Persons ⇒ Legs(x, 2)

VII. Semantic Networks Are Majorly Used For

 Representing data

 Revealing structure (relations, proximity, relative importance)

 Supporting conceptual edition

 Supporting navigation

VIII. Advantages of Using Semantic Networks

 The semantic network is more natural than the logical representation;

 The semantic network permits using of effective inference algorithm

(graphical algorithm)

 They are simple and can be easily implemented and understood.

MUQuestionPapers.com

 The semantic network can be used as a typical connection application among various

fields of knowledge, for instance, among computer science and anthropology.

 The semantic network permits a simple approach to investigate the problem space.

IX. Disadvantages of Using Semantic Networks

 There is no standard definition for link names

 Semantic Nets are not intelligent, dependent on the creator

Q.5 f) Write a note on Event calculus. (5)

I. Situation calculus is limited in its applicability: it was designed to describe a world in

which actions are discrete, instantaneous, and happen one at a time. Consider a

continuous action, such as filling a bathtub. Situation calculus can say that the tub is

empty before the action and full when the action is done, but it can’t talk about what

happens during the action. It also can’t describe two actions happening at the same

time—such as brushing one’s teeth while waiting for the tub to fill. To handle such

cases we introduce an alternative formalism known as event calculus, which is based

on points of time rather than on situations.

II. Event calculus reifies fluents and events. The fluent At(Shankar , Berkeley) is an

object that refers to the fact of Shankar being in Berkeley, but does not by itself say

anything about whether it is true. To assert that a fluent is actually true at some point

in time we use the predicate T, as in T(At(Shankar , Berkeley), t).

III. Events are described as instances of event categories. The event E1 of Shankar flying

from San Francisco to Washington, D.C. is described as

E1 ∈ Flyings ∧ Flyer (E1, Shankar) ∧ Origin(E1, SF) ∧ Destination(E1,DC) .

IV. If this is too verbose, we can define an alternative three-argument version of the

category of flying events and say

E1 ∈ Flyings(Shankar , SF,DC) .

V. We then use Happens(E1, i) to say that the event E1 took place over the time interval

i, and we say the same thing in functional form with Extent(E1)=i. We represent time

intervals by a (start, end) pair of times; that is, i = (t1, t2) is the time interval that

starts at t1 and ends at t2.

VI. The complete set of predicates for one version of the event calculus is

 T(f, t) Fluent f is true at time t

 Happens(e, i) Event e happens over the time interval i

 Initiates(e, f, t) Event e causes fluent f to start to hold at time t

 Terminates(e, f, t) Event e causes fluent f to cease to hold at time t

 Clipped(f, i) Fluent f ceases to be true at some point during time interval i

 Restored (f, i) Fluent f becomes true sometime during time interval i

MUQuestionPapers.com

VII. We can extend event calculus to make it possible to represent simultaneous events

(such as two people being necessary to ride a seesaw), exogenous events (such as the

wind blowing and changing the location of an object), continuous events (such as the

level of water in the bathtub continuously rising) and other complications.

