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Q.1 a) What is Artificial Intelligence? State its applications.    (5) 

 AI is one of the newest fields in science and engineering. 

 AI is a general term that implies the use of a computer to model & replicate intelligent 

behaviour. 

 “AI is the design, study & construction of computer programs that behave 

intelligently.” 

 Artificial intelligence (AI) refers to the simulation of human intelligence in machines 

that are programmed to think like humans and mimic their actions. The term may also 

be applied to any machine that exhibits traits associated with a human mind such as 

learning and problem-solving. 

 The ideal characteristic of artificial intelligence is its ability to rationalize and take 

actions that have the best chance of achieving a specific goal. 

 AI is continuously evolving to benefit many different industries. Machines are wired 

using a cross-disciplinary approach based in mathematics, computer science, 

linguistics, psychology, and more. 

 Research in AI focuses on development & analysis of algorithms that learn & perform 

intelligent behaviour with minimal human intervention. 

 AI is the ability of machine or computer program to think and learn. 

 The concept of AI is based on idea of building machines capable of thinking, acting & 

learning like humans. 

 AI is only field to attempt to build machines that will function autonomously complex 

changing environments. 

 AI has focused chiefly on following components of intelligence. 

o Learning: - the learning by trial & error. 

o Reasoning: - reasoning skill often happen subconsciously & within seconds. 

o Decision making: - it is a process of making choices by identifying a decision 

gathering information & assessing alternative resolutions. 

o Problem solving: - problem solving particularly in AI may be characterized as 

systematic search in order to reach goal or solutions. 

Artificial Intelligence has various applications in today's society. It is becoming essential for 

today's time because it can solve complex problems with an efficient way in multiple 

industries, such as Healthcare, entertainment, finance, education, etc. AI is making our daily 

life more comfortable and fast. 

Following are some sectors which have the application of Artificial Intelligence: 

https://www.investopedia.com/articles/investing/072215/investors-turn-artificial-intelligence.asp
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I. AI in Astronomy 

o Artificial Intelligence can be very useful to solve complex universe problems. AI 

technology can be helpful for understanding the universe such as how it works, origin, 

etc. 

II. AI in Healthcare 

o In the last, five to ten years, AI becoming more advantageous for the healthcare 

industry and going to have a significant impact on this industry. 

o Healthcare Industries are applying AI to make a better and faster diagnosis than 

humans. AI can help doctors with diagnoses and can inform when patients are 

worsening so that medical help can reach to the patient before hospitalization. 

III. AI in Gaming 

o AI can be used for gaming purpose. The AI machines can play strategic games like 

chess, where the machine needs to think of a large number of possible places. 

IV. AI in Finance 

o AI and finance industries are the best matches for each other. The finance industry is 

implementing automation, chatbot, adaptive intelligence, algorithm trading, and 

machine learning into financial processes. 

V. AI in Data Security 

o The security of data is crucial for every company and cyber-attacks are growing very 

rapidly in the digital world. AI can be used to make your data more safe and secure. 

Some examples such as AEG bot, AI2 Platform, are used to determine software bug 

and cyber-attacks in a better way. 

VI. AI in Social Media 

o Social Media sites such as Facebook, Twitter, and Snapchat contain billions of user 

profiles, which need to be stored and managed in a very efficient way. AI can 

organize and manage massive amounts of data. AI can analyze lots of data to identify 

the latest trends, hashtag, and requirement of different users. 

VII. AI in Travel & Transport 

o AI is becoming highly demanding for travel industries. AI is capable of doing various 

travel related works such as from making travel arrangement to suggesting the hotels, 

flights, and best routes to the customers. Travel industries are using AI-powered 
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chatbots which can make human-like interaction with customers for better and fast 

response. 

VIII. AI in Automotive Industry 

o Some Automotive industries are using AI to provide virtual assistant to their user for 

better performance. Such as Tesla has introduced TeslaBot, an intelligent virtual 

assistant. 

o Various Industries are currently working for developing self-driven cars which can 

make your journey more safe and secure. 

IX. AI in Robotics: 

o Artificial Intelligence has a remarkable role in Robotics. Usually, general robots are 

programmed such that they can perform some repetitive task, but with the help of AI, 

we can create intelligent robots which can perform tasks with their own experiences 

without pre-programmed. 

o Humanoid Robots are best examples for AI in robotics, recently the intelligent 

Humanoid robot named as Erica and Sophia has been developed which can talk and 

behave like humans. 

X. AI in Entertainment 

o We are currently using some AI based applications in our daily life with some 

entertainment services such as Netflix or Amazon. With the help of ML/AI 

algorithms, these services show the recommendations for programs or shows. 

 

 

Q.1 b) Discuss Turing test with Artificial Intelligence approach.   (5) 

I. The Turing Test, proposed by Alan Turing (1950), was designed to provide a 

satisfactory operational definition of intelligence. To judge whether the system can act 

like a human, Sir Alan turing had designed a test known as turing test. 

II. A Turing Test is a method of inquiry in artificial intelligence (AI) for determining 

whether or not a computer is capable of thinking like a human being. 

III. A computer passes the test if a human interrogator, after posing some written 

questions, cannot tell whether the written responses come from a person or from a 

computer. Programming a computer to pass a rigorously applied test provides plenty 

to work on. The computer would need to possess the following capabilities: 

1. Natural language processing to enable it to communicate successfully in 

English; 

2. Knowledge representation to store what it knows or hears; 

https://searchenterpriseai.techtarget.com/definition/AI-Artificial-Intelligence
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3. Automated reasoning to use the stored information to answer questions and 

to draw new conclusions; 

4. Machine learning to adapt to new circumstances and to detect and extrapolate 

patterns. 

IV. Turing’s test deliberately avoided direct physical interaction between the interrogator 

and the computer, because physical simulation of a person is unnecessary for 

intelligence. However, the so-called total Turing Test includes a video signal so that 

the interrogator can test the subject’s perceptual abilities, as well as the opportunity 

for the interrogator to pass physical objects “through the hatch.” To pass the total 

Turing Test, the computer will need 

5. Computer vision to perceive objects, and 

6. Robotics to manipulate objects and move about. 

V. These six disciplines compose most of AI, and Turing deserves credit for designing a 

test that remains relevant 60 years later. Yet AI researchers have devoted little effort 

to passing the Turing Test, believing that it is more important to study the underlying 

principles of intelligence than to duplicate an exemplar.  

 

 

 

Q.1 c) What are agents? Explain how they interact with environment.   (5) 

 An agent is anything that can be viewed as perceiving its environment through 

sensors and acting upon that environment through actuators. 

 A human agent has eyes, ears, and other organs for sensors and hands, legs, vocal 

tract, and so on for actuators. 

 Eyes, ears, nose, skin, tongue. These senses sense the environment are called as 

sensors. Sensors collect percepts or inputs from environment and passes it to the 

processing unit. 

 Actuators or effectors are the organs or tools using which the agent acts upon the 

environment. Once the sensor senses the environment, it gives this information to 

nervous system which takes appropriate action with the help of actuators. In case of 

human agents we have hands, legs as actuators or effectors. 

 A robotic agent might have cameras and infrared range finders for sensors and various 

motors for actuators.  

 A software agent receives keystrokes, file contents, and network packets as sensory 

inputs and acts on the environment by displaying on the screen, writing files, and 

sending network packets. 

 Use the term percept to refer to the agent’s perceptual inputs at any given instant. An 

agent’s percept sequence is the complete history of everything the agent has ever 

perceived. 

 In general, an agent’s choice of action at any given instant can depend on the entire 

percept sequence observed to date, but not on anything it hasn’t perceived. 



 
MUQuestionPapers.com 

 

 By specifying the agent’s choice of action for every possible percept sequence, we 

have said more or less everything there is to say about the agent. Mathematically 

speaking, we say that an agent’s behaviour is described by the agent function that 

maps any given percept sequence to an action. 
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Agents interact with environments through sensors and actuators 

Take a simple example of vacuum cleaner agent. 

 

 As shown in figure, there are two blocks A & B having some dirt. Vacuum cleaner 

agent supposed to sense the dirt and collect it, thereby making the room clean. 

 In order to do that the agent must have a camera to see the dirt and a mechanism to 

move forward, backward, left and right to reach to the dirt. Also it should absorb the 

dirt. Based on the percepts, actions will be performed. For example: Move left, Move 

right, absorb, No Operation. 

 Hence the sensor for vacuum cleaner agent can be camera, dirt sensor and the actuator 

can be motor to make it move, absorption mechanism. And it can be represented as 

[A, Dirty], [B, Clean], [A, Absorb], [B, Nop], etc. 

Types of Environment 

I. Fully observable vs. partially observable:   

Agent  Sensors  
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 If an agent’s sensors give it access to the complete state of the environment at each 

point in time, then we say that the task environment is fully observable.  

 Fully observable environments are convenient because the agent need not maintain 

any internal state to keep track of the world. An environment might be partially 

observable because of noisy and inaccurate sensors or because parts of the state are 

simply missing from the sensor data.  

 If the agent has no sensors at all then the environment is unobservable. 

II. Single agent vs. multiagent:  

 An agent solving a crossword puzzle by itself is clearly in a single-agent environment, 

while in case of car driving agent, there are multiple agents driving on the road, hence 

it’s a multiagent environment.  

 For example, in chess, the opponent entity B is trying to maximize its performance 

measure, which, by the rules of chess, minimizes agent A’s performance measure. 

Thus, chess is a competitive multiagent environment.  

 In the taxi-driving environment, on the other hand, avoiding collisions maximizes the 

performance measure of all agents, so it is a partially cooperative multiagent 

environment. It is also partially competitive because, for example, only one car can 

occupy a parking space.  

III. Deterministic vs. stochastic: 

 If the next state of the environment is completely determined by the current state and 

the action executed by the agent, then we say the environment is deterministic; 

otherwise, it is stochastic.  

 If the environment is partially observable, however, then it could appear to be 

stochastic.  

IV. Episodic vs. sequential:  

 In an episodic task environment, the agent’s experience is divided into atomic 

episodes. In each episode the agent receives a percept and then performs a single 

action.  

 Crucially, the next episode does not depend on the actions taken in previous episodes. 

Many classification tasks are episodic.  

 In sequential environments, on the other hand, the current decision could affect all 

future decisions. 

 Episodic environments are much simpler than sequential environments because the 

agent does not need to think ahead. 

V. Static vs. dynamic:  

 If the environment can change while an agent is deliberating, then we say the 

environment is dynamic for that agent; otherwise, it is static.  

 Static environments are easy to deal with because the agent need not keep looking at 

the world while it is deciding on an action, nor need it worry about the passage of 

time.  

 Dynamic environments, on the other hand, are continuously asking the agent what it 

wants to do; if it hasn’t decided yet, that counts as deciding to do nothing.  
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 If the environment itself does not change with the passage of time but the agent’s 

performance score does, then we say the environment is semi-dynamic.  

VI. Discrete vs. continuous:  

 The discrete/continuous distinction applies to the state of the environment, to the way 

time is handled, and to the percepts and actions of the agent.  

 For example, the chess environment has a finite number of distinct states (excluding 

the clock).  

 Chess also has a discrete set of percepts and actions.  

 Taxi driving is a continuous-state and continuous-time problem: the speed and 

location of the taxi and of the other vehicles sweep through a range of continuous 

values and do so smoothly over time.  

 Taxi-driving actions are also continuous (steering angles, etc.). Input from digital 

cameras is discrete, strictly speaking, but is typically treated as representing 

continuously varying intensities and locations. 

VII. Known vs. unknown: 

 In known environment, the output for all probable actions is given. state of knowledge 

about the “laws of physics” of the environment. 

 In case of unknown environment, for an agent to make a decision, it has to gain 

knowledge about how the environments works. 

 

 

Q.1 d) What is rational agent? Discuss in brief about rationality.   (5) 

Rational Agent:  

For each possible percept sequence, a rational agent should select an action that is expected to 

maximize its performance measure, based on the evidence provided by the percept sequence 

and whatever built-in knowledge the agent has. 

1. The concept of rational agents as central to our approach to artificial intelligence. 

2. Rationality is distinct from omniscience (all-knowing with infinite knowledge)  

3. Agents can perform actions in order to modify future percepts so as to obtain useful 

information (information gathering, exploration)  

4. An agent is autonomous if its behaviour is determined by its own percepts & experience 

(with ability to learn and adapt) without depending solely on build-in knowledge 

5. A rational agent is one that does the right thing—conceptually speaking, every entry in 

the table for the agent function is filled out correctly. Obviously, doing the right thing is 

better than doing the wrong thing, but what does it mean to do the right thing? 

6. If the sequence is desirable, then the agent has performed well. This notion of desirability 

is captured by a performance measure that evaluates any given sequence of environment 

states. 

7. For every percept sequence a built-in knowledge base is updated, which is very useful for 

decision making, because it stores the consequences of performing some particular action. 
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8. If the consequences direct to achieve desired goal then we get a good performance 

measure factor, else if the consequences do not lead to desired goal sate, then we get a 

poor performance measure factor. 

For example :- if agents hurts his finger while using nail and hammer, then while using it 

for the next time agent will be more careful and the probability of not getting hurts will 

increase. In short agent will be able to use the hammer and nail more efficiently. 

9. A rational agent should be autonomous—it should learn what it can to compensate for 

partial or incorrect prior knowledge. 

10. Rational agent not only to gather information but also to learn as much as possible from 

what it perceives. 

11. After sufficient experience of its environment, the behaviour of a rational agent can 

become effectively independent of its prior knowledge. Hence, the incorporation of 

learning allows one to design a single rational agent that will succeed in a vast variety of 

environments. 

12. What is rational at any given time depends on four things: 

 The performance measure that defines the criterion of success. 

 The agent’s prior knowledge of the environment. 

 The actions that the agent can perform. 

 The agent’s percept sequence to date. 

Acting rationally: The rational agent approach 

 An agent is just something that acts (agent comes from the Latin agere, to do). Of 

course, all computer programs do something, but computer agents are expected to do 

more: operate autonomously, perceive their environment, persist over a prolonged 

time period, and adapt to change, and create and pursue goals.  

 A rational agent is one that acts so as to achieve the best outcome or, when there is 

uncertainty, the best expected outcome. In some situations, there is no provably 

correct thing to do, but something must still be done. There are also ways of acting 

rationally that cannot be said to involve inference. For example, recoiling from a hot 

stove is a reflex action that is usually more successful than a slower action taken after 

careful deliberation. 

 All the skills needed for the Turing Test also allow an agent to act rationally. 

Knowledge representation and reasoning enable agents to reach good decisions. We 

need to be able to generate comprehensible sentences in natural language to get by in 

a complex society. We need learning not only for erudition, but also because it 

improves our ability to generate effective behaviour. 

 The rational-agent approach has two advantages over the other approaches. First, it is 

more general than the “laws of thought” approach because correct inference is just 

one of several possible mechanisms for achieving rationality. Second, it is more 

amenable to scientific development than are approaches based on human behaviour or 

human thought. The standard of rationality is mathematically well defined and 

completely general, and can be “unpacked” to generate agent designs that provably 

achieve it. 
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 One important point to keep in mind: We will see before too long that achieving 

perfect rationality—always doing the right thing—is not feasible in complicated 

environments. 

 

 

Q.1 e) Explain PEAS description of task environment for automated taxi.  (5) 

PEAS stands for Performance, Environment, Actuators, and Sensors. It is the short form 

used for performance issues grouped under task environment. 

I. Performance Measure: 

First, what is the performance measure to which we would like our automated driver 

to aspire? Desirable qualities include getting to the correct destination; minimizing 

fuel consumption and wear and tear; minimizing the trip time or cost; minimizing 

violations of traffic laws and disturbances to other drivers; maximizing safety and 

passenger comfort; maximizing profits.  

II. Environment: 

Next, what is the driving environment that the taxi will face? Any taxi driver must 

deal with a variety of roads, ranging from rural lanes and urban alleys to 12-lane 

freeways. 

The roads contain other traffic, pedestrians, stray animals, road works, police cars, 

puddles, and potholes. The taxi must also interact with potential and actual 

passengers.  

III. Actuators: 

The actuators for an automated taxi include those available to a human driver: control 

over the engine through the accelerator and control over steering and braking. In 

addition, it will need output to a display screen or voice synthesizer to talk back to the 

passengers, and perhaps some way to communicate with other vehicles, politely or 

otherwise. 

IV. Sensors: 

The basic sensors for the taxi will include one or more controllable video cameras so 

that it can see the road; it might augment these with infrared or sonar sensors to detect 

distances to other cars and obstacles. To avoid speeding tickets, the taxi should have a 

speedometer, and to control the vehicle properly, especially on curves, it should have 

an accelerometer. 

PEAS description of task environment for automated taxi 

 Performance measure:  

o Safe 

o Fast 

o Optimum speed 

o Legal 

o comfortable trip 

o maximize profits 
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 Environment:  

o Roads 

o other traffic 

o pedestrians 

o customers   

 Actuators:  

o Steering wheel 

o Accelerator 

o Brake 

o Signal 

o horn  

 Sensors:  

o Cameras 

o Sonar 

o Speedometer 

o GPS  

o Odometer 

o engine sensors 

o keyboard 

 

 

Q.1 f) Give comparison between Full observable and partially observable agent. (5) 

Sr. 

No. 

Full Observable Agent Partially Observable Agent 

I.  Fully observable environment is one in 

which the agent can always see the entire 

state of environment.  

Partially observable environment is one 

in which the agent can never see the 

entire state of environment. 

 

II.  In case of fully observable environments 

all relevant portions of the environment 

are observable. 

In case of partially observable 

environments not all relevant portions of 

the environment are observable. 

 

III.  Fully observable environment not need 

memory to make an optimal decision. 

Partially observable environment need 

memory to make an optimal decision. 

 

IV.  A fully observable environment agents 

are able to gather all the necessary 

information required to take actions. 

A partially observable environment 

agents cannot provide errorless 

information at any given time for every 

internal state, as the environment is not 

seen completely at any point of time. 
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V.  In case of fully observable environments 

agents don’t have to keep records of 

internal states. 

In case of partially observable 

environments agents have to keep records 

of internal states. 

 

VI.  Examples: - Word block problem, 8-

puzzle problem, Sudoku puzzle, cross 

word puzzle, Checkers with clock etc. 

 

Examples: - Car driving, Part-picking 

robot, Soccer game. 

VII.  Checker Game is the example of full 

observable environment because the 

agent has complete knowledge of the 

board. 

 

Poker game is an example of partially 

observable environment because the 

cards are not openly on the table (agent 

cannot see the opponent hand). So 

everything about the environment is not 

accessible. 

 

 

 

 

Q.2 a) Discuss in brief the formulation of single state problem.    (5) 

I. Problem Formulation  

 Goal formulation World states with certain properties  

 Definition of the state space (important: only the relevant aspects  abstraction  

 Definition of the actions that can change the world state  

 Definition of the problem type, which is dependent on the knowledge of the world 

states and actions  states in the search space  

 Determination of the search cost (search costs, offline costs) and the execution 

costs (path costs, online costs) 

II. Single-state problem  

 Observable (at least the initial state)  

 Deterministic  

 Static  

 Discrete 

III. Single-state problem  

 Complete world state knowledge complete action knowledgeThe agent always 

knows its world state 

IV. Single state Problem can be defined by 5 components  

1. Initial State: the state the agent starts  

2. Actions: the set of operators that can be executed at a state  

3. Transition model: returns the state that results from doing an action in a state  

4. Goal test: determines whether a given state is a goal state  
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5. Path Cost: function that assigns a numeric cost to a path  

V. The Vacuum Cleaner Problem as a Single-State Problem  

 If the environment is completely accessible, the vacuum cleaner always knows 

where it is and where the dirt is. The solution then is reduced to searching for a 

path from the initial state to the goal state. 

 States for the search: The world states 1-8. 

 

 

VI. Single-state problem 

 exact prediction is possible 

 state - is known exactly after any sequence of actions 

 accessibility of the world all essential information can be obtained through sensors 

 consequences of actions are known to the agent 

 goal - for each known initial state, there is a unique 

goal state that is guaranteed to be reachable via an action sequence simplest case, but 

severely restricted 

VII. Vacuum world, 

  Limitations: 

 Can’t deal with incomplete accessibility 

 incomplete knowledge about consequences changes in the world 

 indeterminism in the world, in action 

VIII. Example: 

 Single-state problem formulation  
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 A problem is defined by 4 items: – initial state e.g., “at Makamba” – operators (or 

successor function S(x)), e.g., Makamba Mabanda, Makamba Rutana – goal test, can 

be  

 Explicit, e.g., x = “at Bujumbura”  

 Implicit, e.g., NoDirt(x) – path cost function, e.g., sum of distances, number of 

operators executed, etc.  

 A solution is a sequence of operators leading from initial state to goal state, e.g., 

Makamba Mabanda Bururi Bujumbura 

IX. Example: 

 

 initial state e.g., “at Arad”  

 actions: Actions(s) returns applicabile actions in s: (Go(Sibiu), Go(Timisoara), 

Go(Zerind)  

 transition model - set of action–state pairs (succesor function Result(s,a)): e.g., 

Result(In(Arad), Go(Zerind))=In(Zerind)  

 goal test - determines if whether a given state is a goal state explicit, e.g., xs = 

“at Bucharest” implicit, e.g., xs = checkmate  

 path cost (additive) - reflects agent’s own performance measure e.g., sum of 

distances, number of actions executed, etc. c(s, a, s′) is the step cost, assumed 

to be ≥ 0 

 

 

Q.2 b) Give the outline of Breadth First Search algorithm.    (5) 

 Breadth-first search is a simple strategy in which the root node is expanded first, 

then all the successors of the root node are expanded next, then their successors, and 

so on. In general, all the nodes are expanded at a given depth in the search tree before 

any nodes at the next level are expanded. 

 Breadth-first search is an instance of the general graph-search algorithm in which the 

shallowest unexpanded node is chosen for expansion. This is achieved very simply by 

using a FIFO queue for the frontier. Thus, new nodes (which are always deeper than 

their parents) go to the back of the queue, and old nodes, which are shallower than the 

new nodes, get expanded first.  

 There is one slight tweak on the general graph-search algorithm, which is that the goal 

test is applied to each node when it is generated rather than when it is selected for 

expansion. This decision is explained below, where we discuss time complexity.  

 Note also that the algorithm, following the general template for graph search, discards 

any new path to a state already in the frontier or explored set; it is easy to see that any 

such path must be at least as deep as the one already found. Thus, breadth-first search 

always has the shallowest path to every node on the frontier. 

 Pseudocode is given in Figure shows the progress of the search on a simple binary 

tree. 
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function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure 

 node ←a node with STATE = problem.INITIAL-STATE, PATH-COST = 0 

 if problem.GOAL-TEST(node.STATE) then return SOLUTION(node) 

 frontier ←a FIFO queue with node as the only element 

 explored ←an empty set 

 loop do 

  if EMPTY?( frontier) then return failure 

  node←POP( frontier ) /* chooses the shallowest node in frontier */ 

  add node.STATE to explored 

  for each action in problem.ACTIONS(node.STATE) do 

     child ←CHILD-NODE(problem, node, action) 

   if child .STATE is not in explored or frontier then 

      if problem.GOAL-TEST(child .STATE) then return SOLUTION(child ) 

      frontier ←INSERT(child , frontier ) 

 

Breadth-first search on a graph 

 

Breadth-first search on a simple binary tree. At each stage, the node to be expanded 

next is indicated by a marker 

 

I. We can easily see that it is complete—if the shallowest goal node is at some finite 

depth d, breadth-first search will eventually find it after generating all shallower 

nodes (provided the branching factor b is finite). Note that as soon as a goal node is 

generated, we know it is the shallowest goal node because all shallower nodes must 

have been generated already and failed the goal test. Now, the shallowest goal node is 

not necessarily the optimal one; technically, breadth-first search is optimal if the path 

cost is a non-decreasing function of the depth of the node. The most common such 

scenario is that all actions have the same cost. 

II. So far, the news about breadth-first search has been good. The news about time and 

space is not so good. Imagine searching a uniform tree where every state has b 

successors. The root of the search tree generates b nodes at the first level, each of 

which generates b more nodes, for a total of b^2 at the second level. Each of these 

generates b more nodes, yielding b^3 nodes at the third level, and so on.  

III. Now suppose that the solution is at depth d. In the worst case, it is the last node 

generated at that level. Then the total number of nodes generated is 

b + b^2 + b^3 + ・ ・ ・ + b^d = O(b^d) . 
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(If the algorithm were to apply the goal test to nodes when selected for expansion, 

rather than when generated, the whole layer of nodes at depth d would be expanded 

before the goal was detected and the time complexity would be O(b^(d+1)).) 

IV. As for space complexity: for any kind of graph search, which stores every expanded 

node in the explored set, the space complexity is always within a factor of b of the 

time complexity. For breadth-first graph search in particular, every node generated 

remains in memory. There will be O(b^(d−1)) nodes in the explored set and O(b^d) 

nodes in the frontier, so the space complexity is O(b^d), i.e., it is dominated by the 

size of the frontier.  

V. Switching to a tree search would not save much space, and in a state space with many 

redundant paths, switching could cost a great deal of time. An exponential complexity 

bound such as O(b^d) is scary.  

VI. The memory requirements are a bigger problem for breadth-first search than is the 

execution time. Fortunately, other strategies require less memory. Time is still a major 

factor. If your problem has a solution at depth 16, then (given our assumptions) it will 

take about 350 years for breadth-first search (or indeed any uninformed search) to 

find it. In general, exponential complexity search problems cannot be solved by 

uninformed methods for any but the smallest instances. 

 

 

 

 

Q.2 c) Give the outline of tree search algorithm.      (5) 

I. Search tree: A tree representation of search problem is called Search tree. The 

root of the search tree is the root node which is corresponding to the initial state. 

II. Tree is a hierarchical data structure which stores the information naturally in the 

form of hierarchy unlike linear data structures like, Linked List, Stack, etc. A tree 

contains nodes(data) and connections(edges) which should not form a cycle. 

III. Following are the few frequently used terminologies for Tree data structure. 

 Node — A node is a structure which may contain a value or condition, or 

represent a separate data structure. 

 Root — The top node in a tree, the prime ancestor. 

 Child — A node directly connected to another node when moving away 

from the root, an immediate descendant. 

 Parent — The converse notion of a child, an immediate ancestor. 

 Leaf — A node with no children. 

 Internal node — A node with at least one child. 

 Edge — The connection between one node and another. 

 Depth — The distance between a node and the root. 

 Level — the number of edges between a node and the root + 1 
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 Height — The number of edges on the longest path between a node and a 

descendant leaf. 

 Breadth — The number of leaves. 

 Sub Tree — A tree T is a tree consisting of a node in T and all of its 

descendants in T. 

 Binary Tree — is a tree data structure in which each node has at most two 

children, which are referred to as the left child and the right child. 

 Binary Search Tree — is a special type of binary tree which has the 

following properties. 

 The left subtree of a node contains only nodes with keys lesser than the node’s key. 

 The right subtree of a node contains only nodes with keys greater than the node’s key. 

 The left and right subtree each must also be a binary search tree. 

IV. “In computer science, tree traversal (also known as tree search) is a form of 

graph traversal and refers to the process of visiting (checking and/or updating) each 

node in a tree data structure, exactly once. Such traversals are classified by the 

order in which the nodes are visited.”  

V. Tree Traversal Algorithms can be classified broadly in the following two 

categories by the order in which the nodes are visited: 

 Depth-First Search (DFS) Algorithm: It starts with the root node and first 

visits all nodes of one branch as deep as possible of the chosen Node and 

before backtracking, it visits all other branches in a similar fashion. There 

are three sub-types under this, which we will cover in this article. 

 Breadth-First Search (BFS) Algorithm: It also starts from the root node 

and visits all nodes of current depth before moving to the next depth in the 

tree. We will cover one algorithm of BFS type in the upcoming section. 

 

VI. The general TREE-SEARCH algorithm is shown informally in Figure 2.Search 

algorithms all share this basic structure; they vary primarily according to how they 

choose which state to expand next—the so-called search strategy. 

VII. The eagle-eyed reader will notice one peculiar thing about the search tree shown 

in Figure 1 it includes the path from Arad to Sibiu and back to Arad again! We 

say that In(Arad) is a repeated state in the search tree, generated in this case by a 

loopy path. 
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Figure 1 Partial search trees for finding a route from Arad to Bucharest. Nodes that 

have been expanded are shaded; nodes that have been generated but not yet expanded 

are outlined in bold; nodes that have not yet been generated are shown in faint dashed 

lines. 

 

VIII. Loopy paths are a special case of the more general concept of redundant paths, 

which exist whenever there is more than one way to get from one state to another. 

Consider the paths Arad–Sibiu (140 km long) and Arad–Zerind–Oradea–Sibiu 

(297 km long). Obviously, the second path is redundant—it’s just a worse way to 

get to the same state. If you are concerned about reaching the goal, there’s never 

any reason to keep more than one path to any given state, because any goal state 

that is reachable by extending one path is also reachable by extending the other. 

 

function TREE-SEARCH(problem) returns a solution, or failure 

 initialize the frontier using the initial state of problem 

 loop do 

  if the frontier is empty then return failure 

  choose a leaf node and remove it from the frontier 

  if the node contains a goal state then return the corresponding solution 

  expand the chosen node, adding the resulting nodes to the frontier 
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function GRAPH-SEARCH(problem) returns a solution, or failure 

 initialize the frontier using the initial state of problem 

 initialize the explored set to be empty 

 loop do 

  if the frontier is empty then return failure 

  choose a leaf node and remove it from the frontier 

  if the node contains a goal state then return the corresponding solution 

  add the node to the explored set 

  expand the chosen node, adding the resulting nodes to the frontier 

  only if not in the frontier or explored set 

Figure 2 An informal description of the general tree-search and graph-search 

algorithms. 

 

 

 

Q.2 d) Explain the mechanism of genetic algorithm.     (5) 

I. A genetic algorithm (or GA) is a variant of stochastic beam search in which 

successor states are generated by combining two parent states rather than by 

modifying a single state. The analogy to natural selection is the same as in stochastic 

beam search, except that now we are dealing with sexual rather than asexual 

reproduction. 

II. Like beam searches, GAs begin with a set of k randomly generated states, called the 

population. Each state, or individual, is represented as a string over a finite alphabet—

most commonly, a string of 0s and 1s.  

III. For example, an 8-queens state must specify the positions of 8 queens, each in a 

column of 8 squares, and so requires 8× log2 8=24 bits. Alternatively, the state could 

be represented as 8 digits, each in the range from 1 to 8. (We demonstrate later that 

the two encodings behave differently.) Figure shows a population of four 8-digit 

strings representing 8-queens states. 
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The genetic algorithm, illustrated for digit strings representing 8-queens states. The 

initial population in (a) is ranked by the fitness function in (b), resulting in pairs 

formating in (c). They produce offspring in (d), which are subject to mutation in (e). 

IV. The following outline how the genetic algorithm works: 

1. The algorithm begins by creating a random initial population. 

2. The algorithm then creates a sequence of new populations. At each step, the algorithm 

uses the individuals in the current generation to create the next population. To create 

the new population, the algorithm performs the following steps: 

a. Scores each member of the current population by computing its fitness value. 

These values are called the raw fitness scores. 

b. Scales the raw fitness scores to convert them into a more usable range of 

values. These scaled values are called expectation values. 

c. Selects members, called parents, based on their expectation. 

d. Some of the individuals in the current population that have lower fitness are 

chosen as elite. These elite individuals are passed to the next population. 

e. Produces children from the parents. Children are produced either by making 

random changes to a single parent—mutation—or by combining the vector 

entries of a pair of parents—crossover. 

f. Replaces the current population with the children to form the next generation. 

3. The algorithm stops when one of the stopping criteria is met.  

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual 

 inputs: population, a set of individuals 

  FITNESS-FN, a function that measures the fitness of an individual 

 repeat 

  new population ←empty set 

  for i = 1 to SIZE(population) do 

   x ←RANDOM-SELECTION(population, FITNESS-FN) 

   y ←RANDOM-SELECTION(population, FITNESS-FN) 

   child ←REPRODUCE(x , y) 

   if (small random probability) then child ←MUTATE(child ) 

   add child to new population 

  population ←new population 

 until some individual is fit enough, or enough time has elapsed 

 return the best individual in population, according to FITNESS-FN 

 

function REPRODUCE(x , y) returns an individual 

 inputs: x , y, parent individuals 

  

 n←LENGTH(x ); c←random number from 1 to n 

 return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n)) 
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A genetic algorithm. The algorithm is the same as the one diagrammed in Figure, with 

one variation: in this more popular version, each mating of two parents produces only 

one offspring, not two. 

V. Initial Population: - The algorithm begins by creating a random initial population,  

VI. Creating the Next Generation:- 

The genetic algorithm creates three types of children for the next generation: 

 Eliteare the individuals in the current generation with the best fitness values. These 

individuals automatically survive to the next generation. 

 Crossover are created by combining the vectors of a pair of parents. 

 Mutation children are created by introducing random changes, or mutations, to a 

single parent. 

o Crossover Children 

The algorithm creates crossover children by combining pairs of parents in the 

current population. At each coordinate of the child vector, the default 

crossover function randomly selects an entry, or gene, at the same coordinate 

from one of the two parents and assigns it to the child. For problems with 

linear constraints, the default crossover function creates the child as a random 

weighted average of the parents. 

o Mutation Children 

The algorithm creates mutation children by randomly changing the genes of 

individual parents. By default, for unconstrained problems the algorithm adds 

a random vector from a Gaussian distribution to the parent. For bounded or 

linearly constrained problems, the child remains feasible. 

VII. Plots of Later Generations 

VIII. Stopping Conditions for the Algorithm 

The genetic algorithm uses the following options to determine when to stop. See the 

default values for each option by running opts = optimoptions('ga'). 

 MaxGenerations —The algorithm stops when the number of generations 

reaches MaxGenerations. 

 MaxTime —The algorithm stops after running for an amount of time in seconds equal 

to MaxTime. 
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Q.2 e) Explain how transition model is used for sensing in vacuum cleaner problem. (5) 

Sensor-less search (condition) 

• Transition model 

• Union of all states that 𝑅𝑒𝑠𝑢𝑙𝑡𝑝(s) returns for all states, s, in your current 

belief state 

• 𝑏′ = 𝑅𝑒𝑠𝑢𝑙𝑡(𝑏,  𝑎) = {𝑠′ : 𝑠′  = 𝑅𝑒𝑠𝑢𝑙𝑡𝑝(s, a) and s ϵ b} 

• This is the prediction step, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑝(b, a) 

• Goal-Test: If all physical states in belief state satisfy 𝐺𝑜𝑎𝑙 − 𝑇𝑒𝑠𝑡𝑝 

• Path cost  Tricky in general. Consider what happens if actions in different physical 

states have different costs. For now assume cost of an action is the same in all states 

1. Prediction stage is the same as for sensorless problems: given the action a in belief state 

b, the predicted belief state is ˆb = PREDICT(b, a)  

2. Observation prediction stage determines the set of percepts o that could be observed in 

the predicted belief state:  

POSSIBLE−PERCEPTS(ˆ b) = {o : o = PERCEPT(s) and s ∈ ˆb}  

3. Update stage determines, for each possible percept, the belief state that would result 

from the percept. The new belief state bo is just the set of states in ˆb that could have 

produced the percept: bo = UPDATE(ˆ b, o) = {s : o = PERCEPT(s) and s ∈ ˆb} the 

updated belief state bo can be no larger than the predicted belief state ˆb -the belief states 

for the different possible percepts will be disjoint, forming a partition of the original 

predicted belief state (for deterministic sensing). 

 

 

Q.2 f) Give the illustration of 8 queen problem using hill climbing algorithm.  (5) 

I. The hill-climbing search algorithm It is simply a loop that continually moves in the 

direction of increasing value—that is, uphill. It terminates when it reaches a “peak” 

where no neighbor has a higher value. The algorithm does not maintain a search tree, 

so the data structure for the current node need only record the state and the value of 

the objective function. Hill climbing does not look ahead beyond the immediate 

neighbors of the current state. This resembles trying to find the top of Mount Everest 

in a thick fog while suffering from amnesia. 

II. Local search algorithms typically use a complete-state formulation, where each state 

has 8 queens on the board, one per column. The successors of a state are all possible 

states generated by moving a single queen to another square in the same column (so 

each state has 8×7=56 successors).  
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III. The heuristic cost function h is the number of pairs of queens that are attacking each 

other, either directly or indirectly. The global minimum of this function is zero, which 

occurs only at perfect solutions. Figure (a) shows a state with h=17. The figure also 

shows the values of all its successors, with the best successors having h=12. 

IV. Hill-climbing algorithms typically choose randomly among the set of best successors 

if there is more than one. Hill climbing is sometimes called greedy local search 

because it grabs a good neighbour state without thinking ahead about where to go 

next. Although greed is considered one of the seven deadly sins, it turns out that 

greedy algorithms often perform quite well. Hill climbing often makes rapid progress 

toward a solution because it is usually quite easy to improve a bad state. For example, 

from the state in Figure (a), it takes just five steps to reach the state in Figure (b), 

which has h=1 and is very nearly a solution. Unfortunately, hill climbing often gets 

stuck for the following reasons: 

 Local maxima: a local maximum is a peak that is higher than each of its 

neighbouring states but lower than the global maximum. Hill-climbing 

algorithms that reach the vicinity of a local maximum will be drawn upward 

toward the peak but will then be stuck with nowhere else to go. More 

concretely, the state in Figure (b) is a local maximum (i.e., a local minimum 

for the cost h); every move of a single queen makes the situation worse. 

 Ridges: Ridges result in a sequence of local maxima that is very difficult for 

greedy algorithms to navigate. 

 Plateaux: a plateau is a flat area of the state-space landscape. It can be a flat 

local maximum, from which no uphill exit exists, or a shoulder, from which 

progress is possible. A hill-climbing search might get lost on the plateau. 

 

(a) An 8-queens state with heuristic cost estimate h=17, showing the value of h for each 

possible successor obtained by moving a queen within its column. The best moves are 

marked.  



 
MUQuestionPapers.com 

 

(b) A local minimum in the 8-queens state space; the state has h=1 but every successor 

has a higher cost. 

V. In each case, the algorithm reaches a point at which no progress is being made. 

Starting from a randomly generated 8-queens state, steepest-ascent hill climbing gets 

stuck 86% of the time, solving only 14% of problem instances. It works quickly, 

taking just 4 steps on average when it succeeds and 3 when it gets stuck—not bad for 

a state space with 8^8 ≈ 17 million states. 

VI. If we always allow sideways moves when there are no uphill moves, an infinite loop 

will occur whenever the algorithm reaches a flat local maximum that is not a 

shoulder. One common solution is to put a limit on the number of consecutive 

sideways moves allowed. For example, we could allow up to, say, 100 consecutive 

sideways moves in the 8-queens problem. This raises the percentage of problem 

instances solved by hill climbing from 14% to 94%. Success comes at a cost: the 

algorithm averages roughly 21 steps for each successful instance and 64 for each 

failure. 

VII. For 8-queens instances with no sideways moves allowed, p ≈ 0.14, so we need 

roughly 7 iterations to find a goal (6 failures and 1 success). The expected number of 

steps is the cost of one successful iteration plus (1−p)/p times the cost of failure, or 

roughly 22 steps in all. When we allow sideways moves, 1/0.94 ≈ 1.06 iterations are 

needed on average and (1×21) + (0.06/0.94)×64 ≈ 25 steps. 

VIII. For 8-queens, then, random-restart hill climbing is very effective indeed. Even for 

three million queens, the approach can find solutions in under a minute. 

IX. The success of hill climbing depends very much on the shape of the state-space 

landscape: if there are few local maxima and plateaux, random-restart hill climbing 

will find a good solution very quickly. 

 

 

 

Q.3 a) Explain the working mechanism of min-max algorithm.    (5) 

I. Minimax is a kind of backtracking algorithm that is used in decision making and 

game theory to find the optimal move for a player, assuming that your opponent also 

plays optimally. It is widely used in two player turn-based games such as Tic-Tac-

Toe, Backgammon, Mancala, Chess, etc. 

II. In Minimax the two players are called maximizer and minimizer. 

The maximizer tries to get the highest score possible while the minimizer tries to do 

the opposite and get the lowest score possible. 

III. It uses a simple recursive computation of the minimax values of each successor state, 

directly implementing the defining equations. The recursion proceeds all the way 

down to the leaves of the tree, and then the minimax values are backed up through 

the tree as the recursion unwinds. 

https://www.geeksforgeeks.org/tag/backtracking/
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IV. The minimax algorithm performs a complete depth-first exploration of the game tree. 

If the maximum depth of the tree is m and there are b legal moves at each point, then 

the time complexity of the minimax algorithm is O (bm).  

V. The space complexity is O (bm) for an algorithm that generates all actions at once, or 

O (m) for an algorithm that generates actions one at a time. For real games, of course, 

the time cost is totally impractical, but this algorithm serves as the basis for the 

mathematical analysis of games and for more practical algorithms. 

Working of Min-Max Algorithm: 

 The working of the minimax algorithm can be easily described using an example. 

Below we have taken an example of game-tree which is representing the two-

player game. 

 In this example, there are two players one is called Maximizer and other is called 

Minimizer. 

 Maximizer will try to get the Maximum possible score, and Minimizer will try to 

get the minimum possible score. 

 This algorithm applies DFS, so in this game-tree, we have to go all the way 

through the leaves to reach the terminal nodes. 

 At the terminal node, the terminal values are given so we will compare those 

value and backtrack the tree until the initial state occurs. Following are the main 

steps involved in solving the two-player game tree: 

 First, we need to replace the single value for each node with a vector of values. 

For example, in a three-player game with players A, B, and C, a vector (vA, vB, 

vC) is associated with each node. For terminal states, this vector gives the utility 

of the state from each player’s viewpoint. (In two-player, zero-sum games, the 

two-element vector can be reduced to a single value because the values are always 

opposite.)  

 The simplest way to implement this is to have the UTILITY function return a 

vector of utilities. Now we have to consider nonterminal states.  

 Consider the node marked X in the game tree shown in Figure. In that state, player 

C chooses what to do. The two choices lead to terminal states with utility vectors 

(vA =1, vB =2, vC =6) and (vA =4, vB =2, vC =3). Since 6 is bigger than 3, C 

should choose the first move. This means that if state X is reached, subsequent 

play will lead to a terminal state with utilities (vA =1, vB =2, vC =6). Hence, the 

backed-up value of X is this vector. The backed-up value of a node n is always the 

utility vector of the successor state with the highest value for the player choosing 

at n.  

 Anyone who plays multiplayer games, such as Diplomacy, quickly becomes 

aware that much more is going on than in two-player games. Multiplayer games 

usually involve alliances, whether formal or informal, among the players. 

Alliances are made and broken as the game proceeds. Strategies for each player in 
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a multiplayer game? It turns out that they can be. For example, suppose A and B 

are in weak positions and C is in a stronger position. Then it is often optimal for 

both A and B to attack C rather than each other, lest C destroy each of them 

individually. In this way, collaboration emerges from purely selfish behaviour. 

 If the game is not zero-sum, then collaboration can also occur with just two 

players. Suppose, for example, that there is a terminal state with utilities _vA 

=1000, vB =1000_ and that 1000 is the highest possible utility for each player. 

Then the optimal strategy is for both players to do everything possible to reach 

this state—that is, the players will automatically cooperate to achieve a mutually 

desirable goal. 

 

 

The first three plies of a game tree with three players (A, B, C). Each node is labelled with 

values from the viewpoint of each player. The best move is marked at the root. 

 

 

 

Q.3 b) Explain in brief about resolution theorem.      (5) 

I. The process of forming an inferred clause or resolving from the parent clauses is 

called resolution.  

II. This method demonstrates that the theorem being false causes an inconsistency with 

the axioms, hence the theorem must have been true all along. It uses only one rule of 

deduction, used to combine two parent clauses into a resolved clause. 

III. We can express the full resolution rule of inference concisely using 'big ' notation: 

The 'big ' is just a more concise way of writing clauses, where underneath the V we 

specify a set of indices for the literals L. For example, if A = {1,2,7} then the first 

parent clause is L1 L2 L7. (We can use a similar 'big ' notation to express 

conjunctions.) The rule resolves literals Pj (a negative literal) and Pk (a positive 

literal). We just remove j and k from the set of indices to get the resolved clauses. 



 
MUQuestionPapers.com 

 

IV. We repreatedly resolve clauses until eventually two sentences resolve together to give 

the empty clause, which contains no literals.  

 Initial State: A knowledge base (KB) consisting of negated theorem and 

axioms in CNF. 

 Operators: The full resolution rule of inference picks two sentences from KB 

and adds a new sentence. 

 Goal Test: Does KB contain False? 

V. Illustrate the concept of a resolution search space with the simple example from 

Aristotle we've seen before. Apparently, all men are mortal and Socrates was a man. 

Given these words of wisdom, we want to prove that Socrates is mortal. We saw how 

this could be achieved using the Modus Ponens rule, and it is instructive to use 

Resolution to prove this as well. 

 The initial KB (including the negated theorem) in CNF is: 

1) is_man(socrates) 

2) ¬is_man(X)  is_mortal(X) 

3) ¬is_mortal(socrates) 

 We can apply resolution to get TWO different solutions. The first alternative is that 

we combine (1) and (2) to get the state A: 

1) is_man(socrates) 

2) ¬is_man(X)  is_mortal(X) 

3) ¬is_mortal(socrates) 

4) is_mortal(socrates) 

 Then combine (3) and (4) to get the state B: 

1) is_man(socrates) 

2) ¬is_man(X)  is_mortal(X) 

3) ¬is_mortal(socrates) 

4) is_mortal(socrates) 

5) False 

 Alternatively, we could initially combine (2) and (3) to get the state C: 

1) is_man(socrates) 

2) ¬is_man(X)  is_mortal(X) 

3) ¬is_mortal(socrates) 

4) ¬is_man(socrates) 

 We then resolve again to get state D: 

1) is_man(socrates) 

2) ¬is_man(X)  is_mortal(X) 

3) ¬is_mortal(socrates) 
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4) ¬is_man(socrates) 

5) False 

 So, we have a search space with two alternative paths to a solution: Initial --> A --> B 

and Initial --> C --> D. 

VI. Instead, it is often more convenient to visualise the developing proof. On the top line 

we can write the clause of our initial KB, and draw lines from the two parent clauses 

to the new clause, indicating what substitution was required, if any. Repeating this 

process for each step we get a proof tree. Here's the finished proof tree for the path 

Initial --> A --> B in our example above: 

 

An here's the proof tree for the alternative path Initial --> C --> D: 

 

VII. Complex proofs require a bit effort to lay out, and it is ususally best not to write out 

all the initial clauses on the top line to begin with, but rather introduce them into the 

tree as they are required. 

VIII. Resolution proof trees make it easier to recontruct a proof. Considering the latter tree, 

we can read the proof by working backwards from False. We could read the proof to 

Aristotle thus: 
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IX. "You said that all men were mortal. That means that for all things X, either X is not a 

man, or X is mortal [CNF step]. If we assume that Socrates is not mortal, then, given 

your previous statement, this means Socrates is not a man [first resolution step]. But 

you said that Socrates is a man, which means that our assumption was false [second 

resolution step], so Socrates must be mortal." 

X. We see that, even in this simple case, it is difficult to translate the resolution proof 

into a human readable one. Due to the popularity of resolution theorem proving, and 

the difficulty with which humans read the output from the provers, there have been 

some projects to translate resolution proofs into a more human readable format. As an 

exercise, generate the proof you would give to Aristotle from the first proof tree. 

XI. In the slides accompanying these notes is an example taken from Russell and Norvig 

about a cat called Tuna being killed by Curiosity. We will work through this example 

in the lecture. 

 

 

Q.3 c) Write a note on Kriegspiel’s Partially observable chess.    (5) 

I. In deterministic partially observable games, uncertainty about the state of the board 

arises entirely from lack of access to the choices made by the opponent. This class 

includes children’s games such as Battleships (where each player’s ships are placed in 

locations hidden from the opponent but do not move) and Stratego (where piece 

locations are known but piece types are hidden). We will examine the game of 

Kriegspiel, a partially observable variant of chess in which pieces can move but are 

completely invisible to the opponent. 

II. The rules of Kriegspiel are as follows: White and Black each see a board containing 

only their own pieces. A referee, who can see all the pieces, adjudicates the game and 

periodically makes announcements that are heard by both players. On his turn, White 

proposes to the referee any move that would be legal if there were no black pieces. If 

the move is in fact not legal (because of the black pieces), the referee announces 

“illegal.” In this case, White may keep proposing moves until a legal one is found—

and learns more about the location of Black’s pieces in the process. Once a legal 

move is proposed, the referee announces one or more of the following: “Capture on 

square X” if there is a capture, and “Check by D” if the black king is in check, where 

D is the direction of the check, and can be one of “Knight,” “Rank,” “File,” “Long 

diagonal,” or “Short diagonal.” (In case of discovered check, the referee may make 

two “Check” announcements.) If Black is checkmated or stalemated, the referee says 

so; otherwise, it is Black’s turn to move. 

III. Kriegspiel may seem terrifyingly impossible, but humans manage it quite well and 

computer programs are beginning to catch up. In Figure —the set of all logically 

possible board states given the complete history of percepts to date. Initially, White’s 

belief state is a singleton because Black’s pieces haven’t moved yet. After White 
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makes a move and Black responds, White’s belief state contains 20 positions because 

Black has 20 replies to any White move.  

IV. Given a current belief state, White may ask, “Can I win the game?” For a partially 

observable game, the notion of a strategy is altered; instead of specifying a move to 

make for each possible move the opponent might make, we need a move for every 

possible percept sequence that might be received. For Kriegspiel, a winning strategy, 

or guaranteed checkmate, is one that, for each possible percept sequence, leads to an 

actual checkmate for every possible board state in the current belief state, regardless 

of how the opponent moves. With this definition, the opponent’s belief state is 

irrelevant—the strategy has to work even if the opponent can see all the pieces. This 

greatly simplifies the computation. Figure shows part of a guaranteed checkmate for 

the KRK (king and rook against king) endgame. In this case, Black has just one piece 

(the king), so a belief state for White can be shown in a single board by marking each 

possible position of the Black king. 

 

Part of a guaranteed checkmate in the KRK endgame, shown on a reduced board. In 

the initial belief state, Black’s king is in one of three possible locations. By a 

combination of probing moves, the strategy narrows this down to one. Completion of 

the checkmate is left as an exercise. 

V. The general AND-OR search algorithm can be applied to the belief-state space to find 

guaranteed checkmates, The incremental belief-state algorithm mentioned in that 

section often finds midgame checkmates up to depth 9—probably well beyond the 

abilities of human players. 
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VI. In addition to guaranteed checkmates, Kriegspiel admits an entirely new concept that 

makes no sense in fully observable games: probabilistic checkmate. Such checkmates 

are still required to work in every board state in the belief state; they are probabilistic 

with respect to randomization of the winning player’s moves. To get the basic idea, 

consider the problem of finding a lone black king using just the white king. Simply by 

moving randomly, the white king will eventually bump into the black king even if the 

latter tries to avoid this fate, since Black cannot keep guessing the right evasive 

moves indefinitely. In the terminology of probability theory, detection occurs with 

probability 1. The KBNK endgame—king, bishop and knight against king—is won in 

this sense; White presents Black with an infinite random sequence of choices, for one 

of which Black will guess incorrectly and reveal his position, leading to checkmate. 

The KBBK endgame, on the other hand, is won with probability 1 – E. 

VII. White can force a win only by leaving one of his bishops unprotected for one move. If 

Black happens to be in the right place and captures the bishop (a move that would lose 

if the bishops are protected), the game is drawn. White can choose to make the risky 

move at some randomly chosen point in the middle of a very long sequence, thus 

reducing _ to an arbitrarily small constant, but cannot reduce _ to zero. 

VIII. It is quite rare that a guaranteed or probabilistic checkmate can be found within any 

reasonable depth, except in the endgame. Sometimes a checkmate strategy works for 

some of the board states in the current belief state but not others. Trying such a 

strategy may succeed, leading to an accidental checkmate—accidental in the sense 

that White could not know that it would be checkmate—if Black’s pieces happen to 

be in the right places. (Most checkmates in games between humans are of this 

accidental nature.) This idea leads naturally to the question of how likely it is that a 

given strategy will win, which leads in turn to the question of how likely it is that each 

board state in the current belief state is the true board state. 

IX. One’s first inclination might be to propose that all board states in the current belief 

state are equally likely—but this can’t be right. Consider, for example, White’s belief 

state after Black’s first move of the game. By definition (assuming that Black plays 

optimally), Black must have played an optimal move, so all board states resulting 

from suboptimal moves ought to be assigned zero probability. This argument is not 

quite right either, because each player’s goal is not just to move pieces to the right 

squares but also to minimize the information that the opponent has about their 

location. Playing any predictable “optimal” strategy provides the opponent with 

information. Hence, optimal play in partially observable games requires a willingness 

to play somewhat randomly. (This is why restaurant hygiene inspectors do random 

inspection visits.) This means occasionally selecting moves that may seem 

“intrinsically” weak—but they gain strength from their very unpredictability, because 

the opponent is unlikely to have prepared any defense against them. 

X. From these considerations, it seems that the probabilities associated with the board 

states in the current belief state can only be calculated given an optimal randomized 

strategy; in turn, computing that strategy seems to require knowing the probabilities 

of the various states the board might be in. This conundrum can be resolved by 
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adopting the game theoretic notion of an equilibrium solution. An equilibrium 

specifies an optimal randomized strategy for each player. Computing equilibria is 

prohibitively expensive, however, even for small games, and is out of the question for 

Kriegspiel. At present, the design of effective algorithms for general Kriegspiel play 

is an open research topic. Most systems perform bounded-depth lookahead in their 

own belief state space, ignoring the opponent’s belief state. Evaluation functions 

resemble those for the observable game but include a component for the size of the 

belief state—smaller is better! 

 

 

 

Q.3 d) Explain in brief about knowledge base agent.     (5) 

I. Knowledge is the basic element for a human brain to know and understand the things 

logically. When a person becomes knowledgeable about something, he is able to do 

that thing in a better way. In AI, the agents which copy such an element of human 

beings are known as knowledge-based agents. 

II. The central component of a knowledge-based agent is its knowledge base, or KB. A 

knowledge base is a set of sentences. (Here “sentence” is used as a technical term. It 

is related but not identical to the sentences of English and other natural languages.) 

Each sentence is expressed in a language called a knowledge representation 

language and represents some assertion about the world. Sometimes we dignify a 

sentence with the name axiom, when the sentence is taken as given without being 

derived from other sentences. 

III. There must be a way to add new sentences to the knowledge base and a way to query 

what is known. The standard names for these operations are TELL and ASK, 

respectively. 

IV. Both operations may involve inference—that is, deriving new sentences from old. 

Inference must obey the requirement that when one ASKs a question of the 

knowledge base, the answer should follow from what has been told (or TELLed) to 

the knowledge base previously. Later in this chapter, we will be more precise about 

the crucial word “follow.” For now, take it to mean that the inference process should 

not make things up as it goes along. 

V. The agent maintains a knowledge base, KB, which may initially contain some 

background knowledge. 

VI. Each time the agent program is called, it does three things. First, it TELLs the 

knowledge base what it perceives. Second, it ASKs the knowledge base what action it 

should perform. In the process of answering this query, extensive reasoning may be 

done about the current state of the world, about the outcomes of possible action 

sequences, and so on. Third, the agent program TELLs the knowledge base which 

action was chosen, and the agent executes the action. 

VII. Knowledge level: - where we need specify only what the agent knows and what its 

goals are, in order to fix its behaviour. For example, an automated taxi might have the 
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goal of taking a passenger from San Francisco to Marin County and might know that 

the Golden Gate Bridge is the only link between the two locations. Then we can 

expect it to cross the Golden Gate Bridge because it knows that that will achieve its 

goal. 

VIII. Implementation level: - Notice that this analysis is independent of how the taxi 

works at the implementation level. It doesn’t matter whether its geographical 

knowledge is implemented as linked lists or pixel maps, or whether it reasons by 

manipulating strings of symbols stored in registers or by propagating noisy signals in 

a network of neurons. 

IX. Example of knowledge-based agents is wumpus world. 

X. The Wumpus world is a simple world example to illustrate the worth of a knowledge-

based agent and to represent knowledge representation. It was inspired by a video 

game Hunt the Wumpus by Gregory Yob in 1973. 

XI. The Wumpus world is a cave which has 4/4 rooms connected with passageways. So 

there are total 16 rooms which are connected with each other. We have a knowledge-

based agent who will go forward in this world. The cave has a room with a beast which 

is called Wumpus, who eats anyone who enters the room. The Wumpus can be shot by 

the agent, but the agent has a single arrow. In the Wumpus world, there are some Pits 

rooms which are bottomless, and if agent falls in Pits, then he will be stuck there 

forever. The exciting thing with this cave is that in one room there is a possibility of 

finding a heap of gold. So the agent goal is to find the gold and climb out the cave 

without fallen into Pits or eaten by Wumpus. The agent will get a reward if he comes 

out with gold, and he will get a penalty if eaten by Wumpus or falls in the pit. 

 

 

Q.3 e) Explain the syntax for propositional logic.      (5) 

 The syntax of propositional logic defines the allowable sentences. The atomic sentences 

consist of a single proposition symbol. Each such symbol stands for a proposition that can 

be true or false.  

 We use symbols that start with an uppercase letter and may contain other letters or 

subscripts, for example: P, Q, R, W1, 3 and North. The names are arbitrary but are often 

chosen to have some mnemonic value—we use W1, 3 to stand for the proposition that the 

wumpus is in [1, 3]. (Remember that symbols such as W1, 3 are atomic, i.e., W, 1, and 3 

are not meaningful parts of the symbol.) There are two proposition symbols with fixed 

meanings: True is the always-true proposition and False is the always-false proposition.  

 Complex sentences are constructed from simpler sentences, using parentheses and logical 

connectives. There are five connectives in common use: 

1) ¬ (not):- 

A sentence such as ¬W1, 3 is called the negation of W1, 3. A literal is either an 

atomic sentence (a positive literal) or a negated atomic sentence (a negative literal). 

Example: - ¬A 
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2) ∧ (and):- 

A sentence whose main connective is ∧, such as W1, 3 ∧ P3, 1, is called a 

conjunction; its parts are the conjuncts. (The ∧ looks like an “A” for “And.”) 

Example: - A∧B 

 

3) ∨ (or):- 

A sentence using ∨, such as (W1, 3∧P3, 1) ∨W2, 2, is a disjunction of the disjuncts 

(W1, 3 ∧ P3, 1) and W2, 2. (Historically, the ∨ comes from the Latin “vel,” which 

means “or.” For most people, it is easier to remember ∨ as an upside-down ∧.) 

Example: - A∨B 

 

4) ⇒ (implies):- 

A sentence such as (W1, 3∧P3, 1) ⇒ ¬W2, 2 is called an implication (or conditional). 

Its premise or antecedent is (W1, 3 ∧P3, 1), and its conclusion or consequent is ¬W2, 

2. Implications are also known as rules or if–then statements. The implication RULES 

symbol is sometimes written as ⊃ or →. 

Example: - A⇒B 

 

5) ⇔ (if and only if):- 

The sentence W1, 3 ⇔ ￢W2, 2 is a biconditional. In other way write this as ≡. 

Example:- A⇔B 

 

A B A∧B A∨B ¬A A⇒B A⇔B 

False False F F T T T 

False True F T T T F 

True False F T F F F 

True True T T F T T 

 

 

 

Q.3 f) Write a note on Wumpus world problem.      (5) 

I. The wumpus world is a cave consisting of rooms connected by passageways. 

Lurking somewhere in the cave is the terrible wumpus, a beast that eats anyone who 

enters its room. The wumpus can be shot by an agent, but the agent has only one 

arrow. Some rooms contain bottomless pits that will trap anyone who wanders into 

these rooms (except for the wumpus, which is too big to fall in). The only mitigating 

feature of this bleak environment is the possibility of finding a heap of gold. Although 

the wumpus world is rather tame by modern computer game standards, it illustrates 

some important points about intelligence. 
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II. A sample wumpus world is shown in Figure. The precise definition of the task 

environment is given, by the PEAS description: 

 Performance measure: +1000 for climbing out of the cave with the gold, –

1000 for falling into a pit or being eaten by the wumpus, –1 for each action 

taken and –10 for using up the arrow. The game ends either when the agent 

dies or when the agent climbs out of the cave. 

 Environment: A 4×4 grid of rooms. The agent always starts in the square 

labelled [1, 1], facing to the right. The locations of the gold and the wumpus 

are chosen randomly, with a uniform distribution, from the squares other than 

the start square. In addition, each square other than the start can be a pit, with 

probability 0.2. 

 Actuators: The agent can move Forward, TurnLeft by 90◦, or TurnRight by 

90◦. The agent dies a miserable death if it enters a square containing a pit or a 

live wumpus. (It is safe, albeit smelly, to enter a square with a dead wumpus.) 

If an agent tries to move forward and bumps into a wall, then the agent does 

not move. The action Grab can be used to pick up the gold if it is in the same 

square as the agent. The action Shoot can be used to fire an arrow in a straight 

line in the direction the agent is facing. The arrow continues until it either hits 

(and hence kills) the wumpus or hits a wall. The agent has only one arrow, so 

only the first Shoot action has any effect. Finally, the action Climb can be 

used to climb out of the cave, but only from square [1, 1]. 

 Sensors: The agent has five sensors, each of which gives a single bit of 

information: 

– In the square containing the wumpus and in the directly (not diagonally) 

adjacent squares, the agent will perceive a Stench. 

– In the squares directly adjacent to a pit, the agent will perceive a Breeze. 

– In the square where the gold is, the agent will perceive a Glitter. 

– When an agent walks into a wall, it will perceive a Bump. 

– When the wumpus is killed, it emits a woeful Scream that can be perceived 

anywhere in the cave. 
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A typical wumpus world. The agent is in the bottom left corner, facing right. 

 

III. The percepts will be given to the agent program in the form of a list of five symbols; 

for example, if there is a stench and a breeze, but no glitter, bump, or scream, the 

agent program will get [Stench, Breeze, None, None, None]. The wumpus 

environment along the various dimensions. Clearly, it is discrete, static, and single-

agent. (The wumpus doesn’t move, fortunately.) It is sequential, because rewards may 

come only after many actions are taken. It is partially observable, because some 

aspects of the state are not directly perceivable: the agent’s location, the wumpus’s 

state of health, and the availability of an arrow.  

IV. As for the locations of the pits and the wumpus: we could treat them as unobserved 

parts of the state that happen to be immutable—in which case, the transition model for 

the environment is completely known; or we could say that the transition model itself 

is unknown because the agent doesn’t know which Forward actions are fatal—in 

which case, discovering the locations of pits and wumpus completes the agent’s 

knowledge of the transition model. 

Exploring the problem of wumpus world: 

I. We use an informal knowledge representation language consisting of writing down 

symbols in a grid (as in Figures 1 and 2).The agent’s initial knowledge base contains 

the rules of the environment, as described previously; in particular, it knows that it is 

in [1, 1] and that [1, 1] is a safe square; we denote that with an “A” and “OK,” 

respectively, in square [1, 1]. 

II. The first percept is [None, None, None, None, None], from which the agent can 

conclude that its neighboring squares, [1, 2] and [2, 1], are free of dangers—they are 

OK. Figure 1(a) shows the agent’s state of knowledge at this point. A cautious agent 

will move only into a square that it knows to be OK. Let us suppose the agent decides 

to move forward to [2, 1]. The agent perceives a breeze (denoted by “B”) in [2, 1], so 

there must be a pit in a neighboring square. The pit cannot be in [1, 1], by the rules of 



 
MUQuestionPapers.com 

 

the game, so there must be a pit in [2, 2] or [3, 1] or both. The notation “P?” in Figure 

1(b) indicates a possible pit in those squares. At this point, there is only one known 

square that is OK and that has not yet been visited. So the prudent agent will turn 

around, go back to [1, 1], and then proceed to [1, 2]. 

 
1(a)        1(b) 

The first step taken by the agent in the wumpus world. (a) The initial situation, after 

percept [None, None, None, None, None]. (b) After one move, with percept [None, 

Breeze, None, None, None]. 

 
  2(a)        2(b) 

Two later stages in the progress of the agent. (a) After the third move, with percept 

[Stench, None, None, None, None]. (b) After the fifth move, with percept [Stench, 

Breeze, Glitter, None, None]. 

III. The agent perceives a stench in [1, 2], resulting in the state of knowledge shown in 

Figure 2(a). The stench in [1, 2] means that there must be a wumpus nearby. But the 

wumpus cannot be in [1, 1], by the rules of the game, and it cannot be in [2, 2] (or the 

agent would have detected a stench when it was in [2, 1]). Therefore, the agent can 

infer that the wumpus is in [1, 3]. The notation W! Indicates this inference. Moreover, 



 
MUQuestionPapers.com 

 

the lack of a breeze in [1, 2] implies that there is no pit in [2, 2]. Yet the agent has 

already inferred that there must be a pit in either [2, 2] or [3, 1], so this means it must 

be in [3, 1]. This is a fairly difficult inference, because it combines knowledge gained 

at different times in different places and relies on the lack of a percept to make one 

crucial step. 

IV. The agent has now proved to itself that there is neither a pit nor a wumpus in [2, 2], so 

it is OK to move there. We do not show the agent’s state of knowledge at [2, 2]; we 

just assume that the agent turns and moves to [2, 3], giving us Figure 2(b). In [2, 3], 

the agent detects a glitter, so it should grab the gold and then return home. 

V. Note that in each case for which the agent draws a conclusion from the available 

information, that conclusion is guaranteed to be correct if the available information is 

correct. 

VI. This is a fundamental property of logical reasoning. In the rest of this chapter, we 

describe how to build logical agents that can represent information and draw 

conclusions such as those described in the preceding paragraphs. 

 

 

 

Q.4 a) What is first order logic? Discuss the different elements used in first order  

logic.            (5) 

I. First-order logic is another way of knowledge representation in artificial intelligence. 

It is an extension to propositional logic. FOL is sufficiently expressive to represent the 

natural language statements in a concise way. 

II. First-order logic is also known as Predicate logic or First-order predicate logic. First-

order logic is a powerful language that develops information about the objects in a 

more easy way and can also express the relationship between those objects. 

III. First-order logic (like natural language) does not only assume that the world contains 

facts like propositional logic but also assumes the following things in the world: 

o Objects: A, B, people, numbers, colors, wars, theories, squares, pits, 

wumpus,…  

o Relations: It can be unary relation such as: red, round, is adjacent, or n-any 

relation such as: the sister of, brother of, has color, comes between 

o Function: Father of, best friend, third inning of, end of,… 

IV. As a natural language, first-order logic also has two main parts: 

o Syntax 

o Semantics 

V. Basic Elements of First-order logic: 

o Following are the basic elements of FOL syntax: 
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Constant 1, 2, A, John, Mumbai, cat,.... 

Variables x, y, z, a, b,.... 

Predicates Brother, Father, >,.... 

Function sqrt, LeftLegOf, .... 

Connectives ∧, ∨, ¬, ⇒, ⇔ 

Equality == 

Quantifier ∀, ∃ 

VI. Atomic sentences: 

o Atomic sentences are the most basic sentences of first-order logic. These sentences 

are formed from a predicate symbol followed by a parenthesis with a sequence of 

terms. 

o We can represent atomic sentences as Predicate (term1, term2, ......, term n). 

o Example: Ravi and Ajay are brothers: => Brothers(Ravi, Ajay). 

                Chinky is a cat: => cat (Chinky). 

VII. Complex Sentences: 

o Complex sentences are made by combining atomic sentences using connectives. 

VIII. First-order logic statements can be divided into two parts: 

o Subject: Subject is the main part of the statement. 

o Predicate: A predicate can be defined as a relation, which binds two atoms together 

in a statement. 

Consider the statement: "x is an integer.", it consists of two parts, the first part x is 

the subject of the statement and second part "is an integer," is known as a predicate. 
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Q.4 b) Explain universal and existential quantifier with suitable example.  (5) 

 A logical quantifier that asserts all values of a given variable in a formula. 

 First-order logic contains two standard quantifiers, called universal and existential.  

 

1. Universal quantifier 

 The symbol ∀ is called the universal quantifier. 

 It expresses the fact that, in a particular universe of discourse, all objects have a 

particular property. 

o ∀x: means: 

o For all objects xx, it is true that ... 

 ∀ is usually pronounced “For all . . .”. (Remember that the upside-down A stands for 

“all.”) 

 That is: 

 Thus, the sentence says, “For all x, if x is a king, then x is a person.” The symbol x is 

called a variable. By convention, variables are lowercase letters. A variable is a term 

all by itself, and as such can also serve as the argument of a function—for example, 

LeftLeg(x). A term with no variables is called a ground term. 

 The universal quantifier can be considered as a repeated conjunction: 

 Suppose our universe of discourse consists of the objects X1, X2, X3…X1, X2, 

X3… and so on. 

 

2. Existential quantifier 

 The symbol ∃ is called the existential quantifier. 

 It expresses the fact that, in a particular universe of discourse, there exists (at least 

one) object having a particular property. 

That is: ∃x means: There exists at least one object xx such that ... 

 for example, that King John has a crown on his head, we write 

∃ x Crown(x) ∧ OnHead(x, John) . 

 ∃x is pronounced “There exists an x such that . . .” or “For some x . . .” 

 

 

Q.4 c) Convert the following natural sentences into FOL form.    (5) 

i. Virat is cricketer. 

Virat(cricketer) 

https://proofwiki.org/wiki/Definition:Universe_of_Discourse
https://proofwiki.org/wiki/Definition:Object
https://proofwiki.org/wiki/Definition:Conjunction
https://proofwiki.org/wiki/Definition:Universe_of_Discourse
https://proofwiki.org/wiki/Definition:Object
https://proofwiki.org/wiki/Definition:Universe_of_Discourse
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ii. All batsman are cricketers. 

For-all(x): batsman(x) -> cricketer(x) 

iii. Everybody speaks some language. 

For-all(x) Exist(y): Person(x) V language(y) -> speaks(x,y) 

iv. Every car has wheel. 

(forall (x) (if (Car x) (exists (y) wheel-of (x y))) 

v. Everybody loves somebody some time. 

(forall (x) (exists (y) -> loves-sometime(x y))) 

 

 

Q.4 d) What is knowledge engineering? Write the steps for its execution.  (5) 

I. Knowledge engineering is a field of artificial intelligence (AI) that tries to emulate the 

judgment and behaviour of a human expert in a given field. 

II. Knowledge engineering is the technology behind the creation of expert systems to 

assist with issues related to their programmed field of knowledge. Expert systems 

involve a large and expandable knowledge base integrated with a rules engine that 

specifies how to apply information in the knowledge base to each particular situation.  

III. The systems may also incorporate machine learning so that they can learn from 

experience in the same way that humans do. Expert systems are used in various fields 

including healthcare, customer service, financial services, manufacturing and the law. 

IV. Using algorithms to emulate the thought patterns of a subject matter expert, 

knowledge engineering tries to take on questions and issues as a human expert would. 

Looking at the structure of a task or decision, knowledge engineering studies how the 

conclusion is reached. 

V. A library of problem-solving methods and a body of collateral knowledge are used to 

approach the issue or question. The amount of collateral knowledge can be very large. 

Depending on the task and the knowledge that is drawn on, the virtual expert may 

assist with troubleshooting, solving issues, assisting a human or acting as a virtual 

agent. 

VI. Scientists originally attempted knowledge engineering by trying to emulate real 

experts. Using the virtual expert was supposed to get you the same answer as you 

would get from a human expert. This approach was called the transfer approach. 

However, the expertise that a specialist required to answer questions or respond 

to issues posed to it needed too much collateral knowledge: information that is not 

central to the given issue but still applied to make judgments. 

https://searchenterpriseai.techtarget.com/definition/AI-Artificial-Intelligence
https://searchcustomerexperience.techtarget.com/definition/virtual-agent
https://whatis.techtarget.com/definition/knowledge-base
https://whatis.techtarget.com/definition/engine
https://searchcio.techtarget.com/definition/knowledge
https://searchenterpriseai.techtarget.com/definition/machine-learning-ML
https://whatis.techtarget.com/definition/algorithm
https://whatis.techtarget.com/definition/troubleshooting
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VII. A surprising amount of collateral knowledge is required to enable analogous 

reasoning and nonlinear thought. Currently, a modelling approach is used where the 

same knowledge and process need not necessarily be used to reach the same 

conclusion for a given question or issue. Eventually, it is expected that knowledge 

engineering will produce a specialist that surpasses the abilities of its human 

counterparts. 

Steps for knowledge engineering execution 

Knowledge engineering projects vary widely in content, scope, and difficulty, but all such 

projects include the following steps: 

I. Identify the task.  

 The knowledge engineer must delineate the range of questions that the 

knowledge base will support and the kinds of facts that will be available for 

each specific problem instance.  

 For example, does the wumpus knowledge base need to be able to choose 

actions or is it required to answer questions only about the contents of the 

environment? Will the sensor facts include the current location? The task will 

determine what knowledge must be represented in order to connect problem 

instances to answers.  

 This step is analogous to the PEAS process for designing agents. 

 

II. Assemble the relevant knowledge.  

 The knowledge engineer might already be an expert in the domain, or might 

need to work with real experts to extract what they know—a process called 

knowledge acquisition.  

 At this stage, the knowledge is not represented formally. The idea is to 

understand the scope of the knowledge base, as determined by the task, and to 

understand how the domain actually works. 

 For the wumpus world, which is defined by an artificial set of rules, the 

relevant knowledge is easy to identify. 

 For real domains, the issue of relevance can be quite difficult—for example, a 

system for simulating VLSI designs might or might not need to take into 

account stray capacitances and skin effects. 

 

III. Decide on a vocabulary of predicates, functions, and constants.  

 That is, translate the important domain-level concepts into logic-level names. 

This involves many questions of knowledge-engineering style.  

 Like programming style, this can have a significant impact on the eventual 

success of the project. For example, should pits be represented by objects or 

by a unary predicate on squares? Should the agent’s orientation be a function 

or a predicate? Should the wumpus’s location depend on time? Once the 
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choices have been made, the result is a vocabulary that is known as the 

ontology of the domain.  

 The word ontology means a particular theory of the nature of being or 

existence.  

 The ontology determines what kinds of things exist, but does not determine 

their specific properties and interrelationships. 

 

IV. Encode general knowledge about the domain.  

 The knowledge engineer writes down the axioms for all the vocabulary terms. 

This pins down (to the extent possible) the meaning of the terms, enabling the 

expert to check the content.  

 Often, this step reveals misconceptions or gaps in the vocabulary that must be 

fixed by returning to step 3 and iterating through the process. 

 

V. Encode a description of the specific problem instance.  

 If the ontology is well thought out, this step will be easy. It will involve 

writing simple atomic sentences about instances of concepts that are already 

part of the ontology.  

 For a logical agent, problem instances are supplied by the sensors, whereas a 

“disembodied” knowledge base is supplied with additional sentences in the 

same way that traditional programs are supplied with input data. 

 

VI. Pose queries to the inference procedure and get answers.  

 This is where the reward is: we can let the inference procedure operate on the 

axioms and problem-specific facts to derive the facts we are interested in 

knowing.  

 Thus, we avoid the need for writing an application-specific solution algorithm. 

 

VII. Debug the knowledge base.  

 Alas, the answers to queries will seldom be correct on the first try. More 

precisely, the answers will be correct for the knowledge base as written, 

assuming that the inference procedure is sound, but they will not be the ones 

that the user is expecting.  

 For example, if an axiom is missing, some queries will not be answerable from 

the knowledge base. A considerable debugging process could ensue. 

 Missing axioms or axioms that are too weak can be easily identified by 

noticing places where the chain of reasoning stops unexpectedly. 

 

 

Q.4 e) Give comparison between forward chaining and backward chaining.  (5) 
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Sr. 

No. 

Forward chaining Backward chaining  

I.  Forward chaining starts from known facts 

and applies inference rule to extract more 

data unit it reaches to the goal. 

Backward chaining starts from the goal 

and works backward through inference 

rules to find the required facts that 

support the goal. 

 

II.  It is a bottom-up approach It is a top-down approach 

 

III.  Forward chaining is known as data-

driven inference technique as we reach to 

the goal using the available data. 

Backward chaining is known as goal-

driven technique as we start from the goal 

and divide into sub-goal to extract the 

facts. 

 

IV.  Forward chaining reasoning applies a 

breadth-first search strategy. 

Backward chaining reasoning applies a 

depth-first search strategy. 

 

V.  Forward chaining tests for all the 

available rules. 

Backward chaining only tests for few 

required rules. 

 

VI.  Forward chaining is suitable for the 

planning, monitoring, control, and 

interpretation application. 

Backward chaining is suitable for 

diagnostic, prescription, and debugging 

application. 

 

VII.  Forward chaining can generate an infinite 

number of possible conclusions. 

 

Backward chaining generates a finite 

number of possible conclusions. 

VIII.  It operates in the forward direction. It operates in the backward direction. 

 

IX.  Forward chaining is aimed for any 

conclusion. 

 

Backward chaining is only aimed for the 

required data. 

 

 

 

Q.4 f) Explain in brief about unification.       (5) 

I. Lifted inference rules require finding substitutions that make different logical 

expressions look identical. This process is called unification and is a key component 

of all first-order inference algorithms.  

II. The UNIFY algorithm takes two sentences and returns a unifier for them if one 

exists: 
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 UNIFY(p, q)=θ where SUBST(θ, p)= SUBST(θ, q) . 

III. Let us look at some examples of how UNIFY should behave. Suppose we have a 

query AskVars(Knows(John, x)): whom does John know? Answers to this query can 

be found by finding all sentences in the knowledge base that unify with Knows(John, 

x). Here are the results of unification with four different sentences that might be in 

the knowledge base: 

 UNIFY(Knows(John, x), Knows(John, Jane)) = {x/Jane} 

 UNIFY(Knows(John, x), Knows(y, Bill )) = {x/Bill, y/John}  

 UNIFY(Knows(John, x), Knows(y,Mother (y))) = {y/John, x/Mother (John)} 

 UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail . 

IV. The last unification fails because x cannot take on the values John and Elizabeth at 

the same time. Now, remember that Knows(x, Elizabeth) means “Everyone knows 

Elizabeth,” so we should be able to infer that John knows Elizabeth. The problem 

arises only because the two sentences happen to use the same variable name, x. The 

problem can be avoided by standardizing apart one of the two sentences being 

unified, which means renaming its variables to avoid name clashes. For example, we 

can rename x in Knows(x, Elizabeth) to x17 (a new variable name) without changing 

its meaning. Now the unification will work: 

 UNIFY(Knows(John, x), Knows(x17, Elizabeth)) = {x/Elizabeth, x17/John} . 

V. An algorithm for computing most general unifiers is shown in Figure. The process is 

simple: recursively explore the two expressions simultaneously “side by side,” 

building up a unifier along the way, but failing if two corresponding points in the 

structures do not match. 

VI. There is one expensive step: when matching a variable against a complex term, one 

must check whether the variable itself occurs inside the term; if it does, the match 

fails because no consistent unifier can be constructed. For example, S(x) can’t unify 

with S(S(x)). This so called occur check makes the complexity of the entire 

algorithm quadratic in the size of the expressions being unified. Some systems, 

including all logic programming systems, simply omit the occur check and 

sometimes make unsound inferences as a result; other systems use more complex 

algorithms with linear-time complexity. 

function UNIFY(x , y, θ) returns a substitution to make x and y identical 

 inputs: x , a variable, constant, list, or compound expression 

  y, a variable, constant, list, or compound expression 

  θ, the substitution built up so far (optional, defaults to empty) 

 

 if θ = failure then return failure 

 else if x = y then return θ 

 else if VARIABLE?(x ) then return UNIFY-VAR(x , y, θ) 

 else if VARIABLE?(y) then return UNIFY-VAR(y, x , θ) 

 else if COMPOUND?(x ) and COMPOUND?(y) then 

  return UNIFY(x.ARGS, y.ARGS, UNIFY(x.OP, y.OP, θ)) 

 else if LIST?(x ) and LIST?(y) then 
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  return UNIFY(x .REST, y.REST, UNIFY(x .FIRST, y.FIRST, θ)) 

 else return failure 

 

function UNIFY-VAR(var, x , θ) returns a substitution 

 

 if {var/val} ∈ θ then return UNIFY(val , x , θ) 

 else if {x/val} ∈ θ then return UNIFY(var, val , θ) 

 else if OCCUR-CHECK?(var, x ) then return failure 

 else return add {var/x } to θ 

The unification algorithm. The algorithm works by comparing the structures of the 

inputs, element by element. The substitution è that is the argument to UNIFY is built up 

along the way and is used to make sure that later comparisons are consistent with 

bindings that were established earlier. In a compound expression such as F(A,B), the 

OP field picks out the function symbol F and the ARGS field picks out the argument list 

(A,B). 

 

 

Q.5 a) What is planning? Explain STRIPS operators with suitable example.  (5) 

Planning 

I. Artificial Intelligence is a critical technology in the future. Whether it is intelligent 

robots or self-driving cars or smart cities, they will all use different aspects of 

Artificial Intelligence!!! But to create any such AI project, Planning is very important. 

So much so that Planning is a critical part of Artificial Intelligence which deals with 

the actions and domains of a particular problem. Planning is considered as the 

reasoning side of acting. 

II. For any planning system, we need the domain description, action specification, 

and goal description. A plan is assumed to be a sequence of actions and each action 

has its own set of preconditions to be satisfied before performing the action and also 

some effects which can be positive or negative. 

III. The planning in Artificial Intelligence is about the decision making tasks performed 

by the robots or computer programs to achieve a specific goal. 

IV. The execution of planning is about choosing a sequence of actions with a high 

likelihood to complete the specific task. 

V. Planning is the fundamental management function, which involves deciding 

beforehand, what is to be done, when is it to be done, how it is to be done and who is 

going to do it. It is an intellectual process which lays down an organisation’s 

objectives and develops various courses of action, by which the organisation can 

achieve those objectives. It chalks out exactly, how to attain a specific goal. 

VI. Planning is nothing but thinking before the action takes place. It helps us to take 

a peep into the future and decide in advance the way to deal with the situations, which 
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we are going to encounter in future. It involves logical thinking and rational decision 

making. 

Importance of Planning 

I. It helps managers to improve future performance, by establishing objectives and 

selecting a course of action, for the benefit of the organisation. 

II. It minimises risk and uncertainty, by looking ahead into the future. 

III. It facilitates the coordination of activities. Thus, reduces overlapping among activities 

and eliminates unproductive work. 

IV. It states in advance, what should be done in future, so it provides direction for action. 

V. It uncovers and identifies future opportunities and threats. 

VI. It sets out standards for controlling. It compares actual performance with the standard 

performance and efforts are made to correct the same. 

STRIPS Operators 

I. STRIPS Stands for STandford Research Institute Problem Solver 

 Tidily arranged actions descriptions  

 Restricted language (function-free literals)  

 Efficient algorithms 

 

II. States represented by:  

 Conjunction of ground (function-free) atoms  

 Example  

 At(Home), Have(Bread)  

 Closed world assumption  

 Atoms that are not present are assumed to be false  

 Example  

 State: At(Home), Have(Bread)  

 Implicitly: ¬Have(Milk),¬Have(Bananas),¬Have(Drill) 

Operator description consists of:  

Action name   Positive literal     Buy(Milk)  

Precondition   Conjunction of positive literals At(Shop)∧Sells(Shop,Milk)  

Effect    Conjunction of literals   Have(Milk) 
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Operator schema  

Operator containing variables 

 

Operator applicability  

Operator o applicable in state s if: there is substitution Subst of the free variables such that 

Subst(precond(o)) ⊆ s 

Example  

Buy(x) is applicable in state  

 At(Shop)∧Sells(Shop,Milk)∧Have(Bread)  

with substitution  

 Subst = { p/Shop, x/Milk } 

Resulting state  

 Computed from old state and literals in Subst(effect)  

1. Positive literals are added to the state  

2. Negative literals are removed from the state  

3. All other literals remain unchanged (avoids the frame problem) 

Formally s’ = (s ∪ {P | P a positive atom, P ∈ Subst(effect(o))})  

  \ {P | P a positive atom, ¬P ∈ Subst(effect(o))} 

Example Application of  

 Drive(a,b) precond: At(a),Road(a,b) effect: At(b),¬At(a)  

to state  

 At(Koblenz), Road(Koblenz,Landau) 

results in  

 At(Landau), Road(Koblenz,Landau) 

A complete set of STRIPS operators can be translated into a set of successor-state axioms 
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Q.5 b) Explain in brief about partially ordered plan.     (5) 

I. Partial-order planning is an approach to automated planning that maintains a partial 

ordering between actions and only commits ordering between actions when forced to 

i.e., ordering of actions is partial. Also this planning doesn't specify which action will 

come out first when two actions are processed.  

II. Partially ordered plans are created by a search through the space of plans rather than 

through the state space. 

III. By contrast, total-order planning maintains a total ordering between all actions at 

every stage of planning. Given a problem in which some sequence of actions is 

required in order to achieve a goal, a partial-order plan specifies all actions that 

need to be taken, but specifies an ordering between actions only where necessary. 

IV. Consider the following situation: a person must travel from the start to the end of an 

obstacle course. This obstacle course is composed of a bridge, a see-saw and a swing-

set. The bridge must be traversed before the see-saw and swing-set are reachable. 

Once reachable, the see-saw and swing-set can be traversed in any order, after which 

the end is reachable. In a partial-order plan, ordering between these obstacles is 

specified only when necessary. The bridge must be traversed first. Second, either the 

see-saw or swing-set can be traversed. Third, the remaining obstacle can be traversed. 

Then the end can be traversed. Partial-order planning relies upon the Principle of 

Least Commitment for its efficiency. 

V. A partial-order plan or partial plan is a plan which specifies all actions that need to 

be taken, but only specifies the order between actions when necessary. It is the result 

of a partial-order planner. A partial-order plan consists of four components: 

 A set of actions (also known as operators). 

 A partial order for the actions. It specifies the conditions about the order of 

some actions. 

 A set of causal links. It specifies which actions meet which preconditions of 

other actions. Alternatively, a set of bindings between the variables in 

actions. 

 A set of open preconditions. It specifies which preconditions are not fulfilled 

by any action in the partial-order plan. 

VI. In order to keep the possible orders of the actions as open as possible, the set of order 

conditions and causal links must be as small as possible. 

VII. A plan is a solution if the set of open preconditions is empty. 

VIII. A linearization of a partial order plan is a total order plan derived from the particular 

partial order plan; in other words, both order plans consist of the same actions, with 

https://en.wikipedia.org/wiki/Automated_planning
https://en.wikipedia.org/w/index.php?title=Principle_of_Least_Commitment&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Principle_of_Least_Commitment&action=edit&redlink=1
https://en.wikipedia.org/wiki/Partial_order
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the order in the linearization being a linear extension of the partial order in the 

original partial order plan. 

 

(a) The tire problem expressed as an empty plan. (b) An incomplete partially ordered 

plan for the tire problem. Boxes represent actions and arrows indicate that one action 

must occur before another. (c) A complete partially-ordered solution. 

  

IX. The search keeps adding to the plan (backtracking if necessary) until all flaws are 

resolved, as in the bottom of Figure. At every step, we make the least commitment 

possible to fix the flaw. For example, in adding the action Remove(Spare, Trunk ) we 

need to commit to having it occur before PutOn(Spare, Axle), but we make no other 

commitment that places it before or after other actions. If there were a variable in the 

action schema that could be left unbound, we would do so. 

X. In the 1980s and 90s, partial-order planning was seen as the best way to handle 

planning problems with independent subproblems—after all, it was the only approach 

that explicitly represents independent branches of a plan. On the other hand, it has the 

disadvantage of not having an explicit representation of states in the state-transition 

model. That makes some computations cumbersome. 

XI. Partial-order planners are not competitive on fully automated classical planning 

problems. However, partial-order planning remains an important part of the field. For 

some specific tasks, such as operations scheduling, partial-order planning with 

domain specific heuristics is the technology of choice.  

XII. Partial-order planning is also often used in domains where it is important for humans 

to understand the plans. Operational plans for spacecraft and Mars rovers are 

generated by partial-order planners and are then checked by human operators before 

being uploaded to the vehicles for execution. The plan refinement approach makes it 

easier for the humans to understand what the planning algorithms are doing and verify 

that they are correct. 

https://en.wikipedia.org/wiki/Linear_extension
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Q.5 c) Explain in brief about hierarchical planning.     (5) 

I. Ever since the conception of Artificial Intelligence, hierarchical problem solving has 

been used as a method to reduce the computational cost of planning.  

II. The idea of hierarchical problem-solving, a well-accepted one, is to distinguish 

between goals and actions of different degrees of importance, and solve the most 

important problems first. Its main advantage derives from the fact that by 

emphasizing certain activities while temporarily ignoring others, it is possible to 

obtain a much smaller search space in which to find a plan. 

III. As an example, suppose that in the household domain we would like to paint the 

ceiling white. Initially the number of conditions to consider may be overwhelming, 

ranging from the availability of various supplies, the suppliers for equipment and 

tools, to the position of the agent, the ladder, and the state of the ceiling. However, we 

could obtain a more manageable search space by first concentrating on whether we 

have the paint, the ladder, and a brush. Once a plan is found we then consider how to 

refine this plan by considering how to get to the rooms where each item is located. 

The process repeats until a full-blown plan is finally found. 

IV. Figure shows, how to create a hierarchical plan to travel from some source to a 

destination. 

 

Travel (Source,dest.) 

 

 

Take-Flight    Take-Train    Take-Bus 

 

 

Goto(Train,Source) Buy-Ticket(Train) Catch(Train)  Leave(Train,dest.) 

 

 

 Goto(counter)  Request(ticket)  Pay(ticket) 

 

Hierarchical planning example 

V. A Hierarchical Planner  

 The intuition behind the operation of a hierarchical planner is shown in Figure In 

this figure there are three levels of abstraction, an abstract level, an intermediate 

level and a concrete level.  

 Each dashed box represents a problem-solver at a given level.  

 A planning problem is first abstracted and solved at the most abstract level. The 

solution obtained at this level, an abstract plan, is taken as the input to a problem-

solver at the next level.  
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 The process ends when a concrete-level solution is found. In general, the 

abstraction levels could range from a single level to multiple levels. The former is 

identical to problem-solving without any abstraction.  

 

Illustrating hierarchical planning 

VI. Planner:- 

 First identify a hierarchy of major conditions. 

 Construct a plan in levels (Major steps then minor steps), so we postpone the details 

to next level. 

 Patch major levels as detail actions become visible. 

 Finally demonstrate. 

VII. Example:- 

 Actions required for “Travelling to Goa”:  

 Opening makemytrip.com (1) 

 Finding flight (2) 

 Buy Ticket (3) 

 Get taxi(2) 

 Reach airport(3) 

 Pay-driver(1) 

 Check in(1) 

 Boarding plane(2) 
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 Reach Goa(3) 

 1st  level Plan : 

 Buy Ticket (3), Reach airport(3), Reach Goa(3) 

 2nd level Plan : 

 Finding flight (2), Buy Ticket (3), Get taxi(2),  Reach airport(3), Boarding 

plane(2), Reach Goa(3) 

 3rd level Plan (final) : 

 Opening makemytrip.com (1), Finding flight (2), Buy Ticket (3), Get taxi(2),  

Reach airport(3), Pay-driver(1), Check in(1), Boarding plane(2), Reach Goa(3) 

 

 

Q.5 d) Write a note on mutex relation.       (5) 

I. A mutex relation holds between two actions at a given level if any of the following 

three conditions holds: 

 Inconsistent effects: one action negates an effect of the other. For example, 

Eat (Cake) and the persistence of Have(Cake) have inconsistent effects 

because they disagree on the effect Have(Cake). 

 Interference: one of the effects of one action is the negation of a precondition 

of the other. For example Eat (Cake) interferes with the persistence of 

Have(Cake) by negating its precondition. 

 Competing needs: one of the preconditions of one action is mutually 

exclusive with a precondition of the other. For example, Bake(Cake) and Eat 

(Cake) are mutex because they compete on the value of the Have(Cake) 

precondition. 

II. A mutex relation holds between two literals at the same level if one is the negation of 

the other or if each possible pair of actions that could achieve the two literals is 

mutually exclusive. This condition is called inconsistent support.  

III. For example, Have(Cake) and Eaten(Cake) are mutex in S1 because the only way of 

achieving Have(Cake), the persistence action, is mutex with the only way of 

achieving Eaten(Cake), namely Eat (Cake).  

IV. In S2 the two literals are not mutex, because there are new ways of achieving them, 

such as Bake(Cake) and the persistence of Eaten(Cake), that are not mutex. 

V. A planning graph is polynomial in the size of the planning problem. For a planning 

problem with l literals and a actions, each Si has no more than l nodes and l^2 mutex 

links, and each Ai has no more than a + l nodes (including the no-ops), (a + l)^2 

mutex links, and 2(al + l) precondition and effect links. Thus, an entire graph with n 

levels has a size of O(n(a + l)^2). The time to build the graph has the same 

complexity. 
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Q.5 e) What is semantic network? Show the semantic representation with suitable 

example.           (5) 

I. Semantic networks are an alternative to predicate logic as a form of knowledge 

representation. The idea is that we can store our knowledge in the form of a graph, 

with nodes representing objects in the world, and arcs representing relationships 

between those objects. 

II. A semantic network, or frame network is a knowledge base that 

represents semantic relations between concepts in a network. It is 

a directed or undirected graph consisting of vertices, which represent concepts, 

and edges, which represent semantic relations between concepts, mapping or 

connecting semantic fields. A semantic network may be instantiated as, for example, 

a graph database or a concept map. 

III. Typical standardized semantic networks are expressed as semantic triples. Semantic 

networks are used in natural language processing applications such as semantic 

parsing and word-sense disambiguation.  

IV. The structural idea is that knowledge can be stored in the form of graphs, with nodes 

representing objects in the world, and arcs representing relationships between those 

objects. 

 Semantic nets consist of nodes, links and link labels. In these networks 

diagram, nodes appear in form of circles or ellipses or even rectangles which 

represents objects such as physical objects, concepts or situations. 

 Links appear as arrows to express the relationships between objects, and link 

labels specify relations. 

 Relationships provide the basic needed structure for organizing the 

knowledge, so therefore objects and relations involved are also not needed to 

be concrete. 

 Semantic nets are also referred to as associative nets as the  nodes are 

associated with other nodes 

 

https://en.wikipedia.org/wiki/Knowledge_base
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/Concept
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Concept
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Semantic_relationship
https://en.wikipedia.org/wiki/Semantic_field
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Concept_map
https://en.wikipedia.org/wiki/Semantic_triple
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Semantic_parsing
https://en.wikipedia.org/wiki/Semantic_parsing
https://en.wikipedia.org/wiki/Word-sense_disambiguation
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A semantic network with four objects (John, Mary, 1, and 2) and four categories. 

Relations are denoted by labeled links. 

V. For example, Figure has a MemberOf link between Mary and FemalePersons , 

corresponding to the logical assertion Mary ∈FemalePersons ; similarly, the SisterOf 

link between Mary and John corresponds to the assertion SisterOf (Mary, John). We 

can connect categories using SubsetOf links, and so on. It is such fun drawing bubbles 

and arrows that one can get carried away.  

VI. For example, we know that persons have female persons as mothers, so can we draw a 

HasMother link from Persons to FemalePersons? The answer is no, because 

HasMother is a relation between a person and his or her mother, and categories do not 

have mother For this reason, we have used a special notation—the double-boxed 

link—in Figure This link asserts that 

  ∀x x∈ Persons ⇒ [∀ y HasMother (x, y) ⇒ y ∈ FemalePersons ] . 

 We might also want to assert that persons have two legs—that is, 

  ∀x x∈ Persons ⇒ Legs(x, 2)  

VII. Semantic Networks Are Majorly Used For 

 Representing data 

 Revealing structure (relations, proximity, relative importance) 

 Supporting conceptual edition 

 Supporting navigation 

VIII. Advantages of Using Semantic Networks 

 The semantic network is more natural than the logical representation; 

 The semantic network permits using of effective inference algorithm 

(graphical algorithm) 

 They are simple and can be easily implemented and understood. 
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 The semantic network can be used as a typical connection application among various 

fields of knowledge, for instance, among computer science and anthropology. 

 The semantic network permits a simple approach to investigate the problem space. 

IX. Disadvantages of Using Semantic Networks 

 There is no standard definition for link names 

 Semantic Nets are not intelligent, dependent on the creator 

 

 

Q.5 f) Write a note on Event calculus.       (5) 

I. Situation calculus is limited in its applicability: it was designed to describe a world in 

which actions are discrete, instantaneous, and happen one at a time. Consider a 

continuous action, such as filling a bathtub. Situation calculus can say that the tub is 

empty before the action and full when the action is done, but it can’t talk about what 

happens during the action. It also can’t describe two actions happening at the same 

time—such as brushing one’s teeth while waiting for the tub to fill. To handle such 

cases we introduce an alternative formalism known as event calculus, which is based 

on points of time rather than on situations. 

II. Event calculus reifies fluents and events. The fluent At(Shankar , Berkeley) is an 

object that refers to the fact of Shankar being in Berkeley, but does not by itself say 

anything about whether it is true. To assert that a fluent is actually true at some point 

in time we use the predicate T, as in T(At(Shankar , Berkeley), t). 

III. Events are described as instances of event categories. The event E1 of Shankar flying 

from San Francisco to Washington, D.C. is described as  

E1 ∈ Flyings ∧ Flyer (E1, Shankar ) ∧ Origin(E1, SF) ∧ Destination(E1,DC) . 

IV. If this is too verbose, we can define an alternative three-argument version of the 

category of flying events and say 

E1 ∈ Flyings(Shankar , SF,DC) . 

V. We then use Happens(E1, i) to say that the event E1 took place over the time interval 

i, and we say the same thing in functional form with Extent(E1)=i. We represent time 

intervals by a (start, end) pair of times; that is, i = (t1, t2) is the time interval that 

starts at t1 and ends at t2.  

VI. The complete set of predicates for one version of the event calculus is 

 

 T(f, t)    Fluent f is true at time t 

 Happens(e, i)   Event e happens over the time interval i 

 Initiates(e, f, t)  Event e causes fluent f to start to hold at time t 

 Terminates(e, f, t)  Event e causes fluent f to cease to hold at time t 

 Clipped(f, i)   Fluent f ceases to be true at some point during time interval i 

 Restored (f, i)  Fluent f becomes true sometime during time interval i 
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VII. We can extend event calculus to make it possible to represent simultaneous events 

(such as two people being necessary to ride a seesaw), exogenous events (such as the 

wind blowing and changing the location of an object), continuous events (such as the 

level of water in the bathtub continuously rising) and other complications. 


