
MUquestionpapers.com 1

C-PROGRAMMING (DEC 2022)
Q. P. CODE: 13334

Q.1. (15

marks)

A. Explain what is flowchart? Explain different symbols in
flowchart.

(5marks)
A flowchart is graphical representation of the algorithm of a
program. The flowchart gives a nice idea of the flow of the
algorithm in sequence as well as the condition changes in the
sequence.

Name Symbol Use in flowchart

Oval
 Used for start or stop of an

algorithm.

Flow line Used to denote the
direction of flow.

Parallelogram Used to perform input or
output i.e. take input from
keyboard or give output to
monitor.

Rectangle Used to indicate operation
is to be performed, for e.g.
addition.

Diamond Used to take a decision, it
normally has one input and
two outputs based on the
condition checked is true or
false.

B. Explain following library functions with proper examples.
(5marks)

MUquestionpapers.com 2

1. pow()
This function is available in the header file “math.h”. This
function calculates and returns the value of xy. The
parameters x and y are to be passed to it. The parameters as
well the answer returned are double data type. But it can
also accept parameters of different data type.

Code:

#include <stdio.h>

#include <math.h>

int main()

{

 int x = 7; // base

double y = 5.2; // power

 // using the pow() function

 double ans = pow(x, y);

 printf("%f", ans);

 return 0;

}

Output:

24803.319527

2. ceil()
This function returns the smallest integral value of the
parameter passed to the function. It rounds the value of x
upward and returns the value. This function is also in the
header file math.h. The parameter accepted and returned of
the data type double.
Code
#include <stdio.h>
#include <math.h>
int main()

MUquestionpapers.com 3

{
 double num = 8.33;
 int result;
 result = ceil(num);
 printf("Ceiling integer of %.2f = %d", num, result);
 return 0;}

Output

Ceiling integer of 7.56 = 8

3. floor()
This function returns the largest integral value of the
parameter passed to the function. It rounds the value of x
downward and returns the value. This function is also in the
header file math.h. The parameter accepted and returned is
of double data type.
Code
#include <stdio.h>
#include <math.h>

int main()
{
 double num = -4.56;
 double result = floor(num);

 printf("Floor integer of %.2f = %.0f", num, result);
 return 0;
}

Output
Floor integer of -4.56 =-5

4. sqrt()
This function finds the square root of the parameter passed
to it and the result is returned to the caller function. It is
available in math.h. This function also accepts a double as
input parameter and returns the result also of double data
type.
Code
#include <math.h>

MUquestionpapers.com 4

#include <stdio.h>
int main()
 {
 double number, squareRoot;
 printf("Enter a number: ");
 scanf("%lf", &number);

 // computing the square root
 squareRoot = sqrt(number);

 printf("Square root of %.2lf = %.2lf", number, squareRoot);

 return 0;
}

Output

Enter a number: 5

Square root of 5 = 2.24

C. Write a program to print following pattern after accepting
number of rows from user.
(5marks)
1
2 3
4 5 6
7 8 9 10
Code:
#include<stdio.h>
void main()
{
 int i,j,n,k;
 k=1;
 printf(“Enter the number of rows:”);
 scanf(“%d”,&n)’;
 for(i=1;i<=n;i++)
 {
 for(j=1;j<=i;j++)
 {
 printf(“%d”,k++);

MUquestionpapers.com 5

 }
 printf(“\n”);
 }

}

Output:
Enter the number of rows: 4
1
2 3
4 5 6
7 8 9 10

D. Differentiate between structure and union.
(5marks)

Sr.
No.

Structure Union

1. Memory allotted for a
structure is equal to the
space required collectively by
all the members of that
structure.

Memory allotted for a
union is equal to the space
required by the largest
member of that union.

2. Data is more secure in
structures.

Data can be corrupted in a
union.

3. Structure provides ease of
programming.

Unions are comparatively
difficult for programming.

4. Structures require more
memory.

Union requires less
memory.

5. Structure must be used when
information of all the
member elements of
structure is to be stored.

Unions must to be used
when only one of the
member elements of the
union is to be stored.

E. Explain conditional operator with example.

(5marks)

 An operator that requires three operands is called as
ternary or conditional operator.

 Syntax of this operator is as given below:
(condition)? <value if condition is true> : <value if
condition is false>;

MUquestionpapers.com 6

 Example: Program to find greatest of three numbers
#include <stdio.h>

int main()
{
 int n1,n2,n3,greater;
 printf("Enter three numbers:");
 scanf("%d%d%d",&n1,&n2,&n3);
 greater=(n1>n2)?((n1>n3)?n1:n3):((n2>n3)?n2:n3);
 printf("The largest number is %d",greater);

 return 0;
}

 Output:
Enter three numbers:10
20
30
The largest number is 30

Q.2. (15

marks)

A. What is recursion? Write a program to find GCD of two numbers using
recursion. (6marks)

A function that calls itself is called as a recursive function.

Code:

#include <stdio.h>

int gcd(int a, int b) {

 if (b == 0) {

 return a;

 }

 return gcd(b, a % b);

}

MUquestionpapers.com 7

int main() {

 int num1, num2;

 printf("Enter two numbers: ");

 scanf("%d %d", &num1, &num2);

 int result = gcd(num1, num2);

 printf("GCD of %d and %d is %d\n", num1, num2, result);

 return 0;

}

Output:

Enter two numbers:5

10

GCD of 5 and 10 is 5

B. Explain different data type modifiers available in C language.
(5marks)

In the C programming language, data type modifiers are used to modify
the properties or characteristics of basic data types. These modifiers
allow you to fine-tune the behavior and storage of variables. Here are
some of the common data type modifiers available in C:

1. signed / unsigned:

 The `signed` modifier is used to declare a variable as capable of
representing both positive and negative values. It is often used implicitly
when you declare variables without any modifier.

The `unsigned` modifier is used to declare a variable as capable of
representing only non-negative values, effectively doubling the positive
range but eliminating the representation of negative numbers.

MUquestionpapers.com 8

2. short / long:

 The `short` modifier is used to declare a variable with a smaller storage
size than its default data type. For example, `short int` uses less memory
than a regular `int`, but the range of representable values is reduced.

The `long` modifier is used to declare a variable with a larger storage size
than its default data type. For example, `long int` uses more memory
than a regular `int`, allowing you to represent larger values.

3. long long:

 The `long long` modifier is used to declare a variable with an even larger
storage size than the regular `long` modifier. This is often used to
represent very large integers.

4. const:

The `const` modifier is used to declare a variable as constant, meaning
its value cannot be changed after initialization. It is often used to define
constants or to ensure that a variable remains unchanged in a function.

5. volatile:

 The `volatile` modifier is used to indicate that a variable's value can be
changed at any time by external factors that the compiler may not be
aware of. This prevents the compiler from optimizing out certain

accesses to the variable.

6. Bool:

 The `Bool` data type modifier is used to declare variables that can hold
only two values: `0` (false) or `1` (true). It is typically used in boolean
expressions and is often used in conjunction with the <stdbool.h>
header.

7. Complex:
8. The Complex modifier is used to declare variables that hold complex
numbers. It is used in conjunction with the <complex.h> header and
allows you to work with complex arithmetic.

MUquestionpapers.com 9

8. Imaginary:

The imaginary modifier is used to declare variables that represent the
imaginary part of a complex number. Like Complex, it is used with the
<complex.h>header.

C. Write a program to find length of a string using standard library

function.

 (4marks)

#include <stdio.h>

#include <string.h>

int main() {

 char inputString[100];

 printf("Enter a string: ");

 scanf("%s", inputString);

 int length = strlen(inputString);

 printf("Length of the string: %d\n", length);

 return 0;

}

Output:

Enter a string: Mumbai

Length of the string: 6

MUquestionpapers.com 10

Q.3. (15 marks)

A. Write a program to display all prime numbers from 100 to 500.
 (6marks)

 #include <stdio.h>

 int is_prime(int num) {

 if (num <= 1)

 {

 return 0;

 }

 for (int i = 2; i * i <= num; i++) {

 if (num % i == 0) {

 return 0;

 }

 }

 return 1;

 }

 int main() {

 printf("Prime numbers between 100 and 500:\n");

 for (int i = 100; i <= 500; i++) {

 if (is_prime(i)) {

 printf("%d,", i);

 }

 }

 return 0;

 }

MUquestionpapers.com 11

Output:

Prime numbers between 100 and, 500:

101,103,107,109,113,127,131,139,149,151,163,167,173,181,191,193,

197,

199,211,233,227,229,233,239,241,251,257,263,269,271,277,281,283,

293,

307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,

401, 419,421,431,433,439,443,449,457,461,463,467,479,487,491,499

B. Write a program in C to find average of N elements entered by

a user

 using array. (5marks)

 #include <stdio.h>

 int main()

 {

 int N;

 printf("Enter the number of elements: ");

 scanf("%d", &N);

 int numbers[N];

 for (int i = 0; i < N; i++) {

 printf("Enter element %d: ", i + 1);

 scanf("%d", &numbers[i]);

 }

 int sum = 0;

 for (int i = 0; i < N; i++) {

 sum += numbers[i];

 }

MUquestionpapers.com 12

 float average = (float)sum / N;

 printf("Average of %d elements: %.2f\n", N, average);

 return 0;

}

Output:

Enter the number of elements: 4

Enter element 1: 25

Enter element 2: 12

Enter element 3: 13

Enter element 4: 14

Average of 4 elements: 16.00

C. Explain with example left and right shift bitwise operator.
(4marks)

Bitwise shift operators in C are used to shift the bits of a value left or
right by a specified number of positions. These operators are `<<` for left
shift and `>>` for right shift. Bitwise shifts can be used for quick
multiplication or division by powers of 2, as well as manipulating
individual bits in a value.

1. Left Shift (`<<`):

 The left shift operator shifts the bits of a number to the left by the
specified number of positions. It's equivalent to multiplying the number
by 2 raised to the power of the shift count.

2. Right Shift (`>>`):

 The right shift operator shifts the bits of a number to the right by the
specified number of positions. It's equivalent to integer division of the
number by 2 raised to the power of the shift count.

MUquestionpapers.com 13

Here's a complete example program that demonstrates both left and
right shift operators:

#include <stdio.h>

int main() {

 unsigned int num = 12;

 // Left shift

 unsigned int leftShifted = num << 2;

 printf("Left shifted: %u\n", leftShifted);

 // Right shift

 unsigned int rightShifted = num >> 2;

 printf("Right shifted: %u\n", rightShifted);

 return 0;

}

Q.4.

(15 marks)

A. Write a program to store information of 10 students using structures.

Information include roll, name, marks of students. (6marks)

#include <stdio.h>

#include <string.h>

MUquestionpapers.com 14

struct Student {

 int roll;

 char name[50];

 int marks;

};

int main() {

 struct Student students[4];

 for (int i = 0; i < 4; ++i) {

 printf("Enter information for student %d:\n", i + 1);

 printf("Roll: ");

 scanf("%d", &students[i].roll);

 printf("Name: ");

 scanf("%s",students[i].name);

 printf("Marks: ");

 scanf("%d", &students[i].marks);

 }

 printf("\nStudent Information:\n");

 printf("Roll\tname\tmarks\t\n");

 printf("---------------------------------\n");

 for (int i = 0; i < 4; ++i)

 {

MUquestionpapers.com 15

printf("%d\t%s\t %d\n",students[i].roll,students[i].name,students[i].mar
ks);

 }

 return 0;

}

Output:

B. Write a c program to check whether entered string is palindrome or
not.

 (5marks)

#include<stdio.h>

void main()

MUquestionpapers.com 16

{

 int n=0,i;

 char a[100],rev[100];

 printf("Enter a string:");

 scanf("%s",a);

 while(a[n]!='\0');

 {

 n++;

 }

 for(i=0;i<=(n-1);i++)

 {

 rev[n-i-1]=a[i];

 }

 for(i=0;i<=n-1;i++)

 {

 if(a[i]!=rev[i])

 break;

 }

 if(i==n)

 printf("The string is palindrome.");

 else

 printf("The string is not palindrome.");

MUquestionpapers.com 17

}

Output:

Enter a string: Mom

The string is palindrome.

C. Write output of the following code. (4marks)

#include<stdio.h>

void main()

{

int i;

for(i=0;i<5i++);

printf(“%d”,i);

printf(“\n hi”);

}

OUTPUT:

5

hi

Q.5.

A. Write a program to find largest of three numbers. (6marks)

#include <stdio.h>

int main()

{

MUquestionpapers.com 18

 int a,b,c;

 printf("Enter three numbers:");

 scanf("%d%d%d",&a,&b,&c);

 if(a>b)

 {

 if(a>c)

 {

 printf("%d is greater",a);

 }

 else

 {

 printf("%d is greater",c);

 }

 }

 else

 {

 if(b>c)

 {

 printf("%d is greater",b);

 }

 else

 {

MUquestionpapers.com 19

 printf("%d is greater",c);

 }

 }

 return 0;

}

Output:

Enter three numbers:

5

8

4

8 is greater

B. Differentiate between entry and exit control loop (5marks)

1. Entry-Controlled Loop:

An entry-controlled loop is a loop where the condition is checked before
the loop body is executed. This means that if the condition is initially
false, the loop body will not execute at all. In C, the `while` loop and the

`for` loop are examples of entry-controlled loops.

Example using a `while` loop (entry-controlled):

int i = 0;

while (i < 5) {

 printf("%d\n", i);

 i++;

}

MUquestionpapers.com 20

 2. Exit-Controlled Loop:

An exit-controlled loop is a loop where the loop body is executed at least
once before the condition is checked. In other words, the loop body is
guaranteed to run at least once, even if the condition is false from the
beginning. In C, the `do-while` loop is an example of an exit-controlled
loop.

Example using a `do-while` loop (exit-controlled):

int i = 0;

do {

 printf("%d\n", i);

 i++;

} while (i < 5);

 In summary:

Entry-Controlled Loop (while loop and for loop): The loop body is
executed only if the condition is initially true.

Exit-Controlled Loop (do-while loop): The loop body is executed at least
once before the condition is checked.

A function prototype in C serves as forward declaration of a function
before its actual implementation or definition. It informs the compiler
about the function’s name, return type, and parameter type, allowing
the compiler to perform type checking and validation during compilation.

C. Explain need of function prototype with example.

(4marks)

A function prototype in C serves as forward declaration of a function
before its actual implementation or definition. It informs the compiler
about the function’s name, return type, and parameter type, allowing
the compiler to perform type checking and validation during compilation.

MUquestionpapers.com 21

The general syntax of function prototype in c :
return_type function_name(parameter1_type, parameter2_type, ...);

Example:

#include <stdio.h>

// Function prototype

int add(int a, int b);

int main() {

 int result;

 // Function call before definition

 result = add(5, 3);

 printf("The sum is: %d\n", result);

 return 0;

}

// Function definition

int add(int a, int b) {

 return a + b;

}

MUquestionpapers.com 22

Q.6.

A. Write a program to check whether square matrix is symmetric or not.

 (6marks)

#include <stdio.h>

#include <stdbool.h>

#define MAX_SIZE 10

bool isSymmetric(int matrix[MAX_SIZE][MAX_SIZE], int size)

 {

 for (int i = 0; i < size; i++)

 {

 for (int j = 0; j < size; j++)

 {

 if (matrix[i][j] != matrix[j][i])

 {

 return false;

 }

 }

 }

 return true;

}

MUquestionpapers.com 23

int main() {

 int size;

 printf("Enter the size of the square matrix: ");

 scanf("%d", &size);

 if (size <= 0 || size > MAX_SIZE)

 {

 printf("Invalid matrix size.\n");

 return 1;

 }

 int matrix[MAX_SIZE][MAX_SIZE];

 printf("Enter the elements of the matrix:\n");

 for (int i = 0; i < size; i++)

 {

 for (int j = 0; j < size; j++)

 {

 scanf("%d", &matrix[i][j]);

 }

 }

 if (isSymmetric(matrix, size)) {

 printf("The matrix is symmetric.\n");

MUquestionpapers.com 24

 } else {

 printf("The matrix is not symmetric.\n");

 }

 return 0;

}

Output:

Enter the size of the square matrix:3

Enter the elements of the matrix:

1

0

0

0

1

0

0

0

1

The matrix is symmetric

B. Write algorithm and draw flowchart to check whether entered number
is prime or not. (5marks)

1. Start the program.

2. 2. Declare a function `isPrime` that takes an integer `num` as an

argument and returns an integer:

 - If `num` is less than or equal to 1, return 0 (indicating not prime).

MUquestionpapers.com 25

 - Iterate from `i` starting at 2 up to the square root of `num`:

 - If `num` is divisible by `i` (i.e., `num % i == 0`), return 0 (indicating

not prime).

 - If no divisors were found, return 1 (indicating prime).

3. In the `main` function:

 - Declare an integer variable `num` to store the user-entered number.

 - Display a prompt to the user: "Enter a number: ".

 - Read the user's input into the `num` variable using `scanf`.

4. Call the `isPrime` function with `num` as an argument to check

whether it's prime or not.

5. Based on the return value of `isPrime`, display an appropriate

message:

 - If `isPrime(num)` returns 1, print "num is a prime number."

 - If `isPrime(num)` returns 0, print "num is not a prime number."

6. End the program.

C. Explain with syntax and example multi-way branching statement.

 (4marks)

Syntax:

switch (expression) {

 case constant1:

 // Code to be executed if expression equals constant1

 break;

 case constant2:

 // Code to be executed if expression equals constant2

 break;

MUquestionpapers.com 26

 // Add more cases as needed

 default:

 // Code to be executed if no case matches expression

}

Example:

#include <stdio.h>

int main() {

 int day =3;

 switch (day) {

 case 1:

 printf("Monday\n");

 break;

 case 2:

 printf("Tuesday\n");

 break;

 case 3:

 printf("Wednesday\n");

 break;

 case 4:

 printf("Thursday\n");

 break;

 case 5:

MUquestionpapers.com 27

 printf("Friday\n");

 break;

 case 6:

 printf("Saturday\n");

 break;

 case 7:

 printf("Sunday\n");

 break;

 default:

 printf("Invalid day\n");

 }

 return 0;

}

Output:

Wednesday

