MUMBAI UNIVERSITY CBCGS SEM I APPLIED MATHS I DEC 2022 PAPER SOLUTION

Q1) a) Prove that $\operatorname{sech}^{-1}(\sin \theta) \log \left(\cot \frac{\theta}{2}\right)$
(5M)
Ans: LHS $=\operatorname{sech}^{-1}(\sin \theta)$
Let $\mathrm{y}=\operatorname{sech}^{-1}(\sin \theta)$
Sec hy $=(\sin \theta)$
$\frac{1}{(\sin \theta)}=\frac{1}{\sec h y}$
Cos hy $=\operatorname{cosec} \theta$
$Y=\cosh ^{-1}(\operatorname{cosec} \theta)$
But $\cosh ^{-1} x=\log \left(x+\sqrt{x^{2}-1}\right)$
$\therefore \mathrm{y}=\log (\operatorname{cosec} \theta)+\sqrt{\operatorname{cosec} 2 \theta}-1$
$\therefore \mathrm{y}=\log (\operatorname{cosec} \theta+\cot \theta)$
$=\log \left(\frac{1}{(\sin \theta)}=\frac{\cos \theta}{\sin \theta}\right)$
$=\log \left(\frac{1+\cos \theta}{\sin \theta}\right)$
$=\log \left(\frac{2 \cos ^{2} \frac{\theta}{2}}{2 \cos \frac{\theta}{2} \sin \frac{\theta}{2}}\right)$
$=\log \cot \frac{\theta}{2}$
= RHS
\therefore LHS $=$ RHS
Hence proved

Q1)b) If $z=x^{y}+y^{x}$ then prove that $\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}$
(5M)

Ans: To prove that mixed partial derivatives are equal, we need to calculate the second mixed partial derivatives of the function $z=x^{y}+y^{x}$ with respect to x and y and show that they are equal.

Let start by finding the first partial derivative: $\quad \frac{\partial z}{\partial x}=$ $y \cdot x^{y-1}+y^{x} \cdot \ln (y)$
$\frac{\partial z}{\partial y}=x^{y} \cdot \ln (\mathrm{x})+\mathrm{x} \cdot y^{x-1}$
Now, let's find the second-order partial derivatives:

$$
\begin{aligned}
& \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\mathrm{y} \cdot x^{y-1}+y^{x} \cdot \ln (\mathrm{y})\right)=\mathrm{y} \cdot(\mathrm{y}-1) \cdot x^{y-2}+y^{x} \cdot \ln (\mathrm{y})+ \\
& y^{x-1}
\end{aligned}
$$

$$
\frac{\partial^{2} z}{\partial y \partial x}=\frac{\partial}{\partial y}\left(x^{y} \cdot \ln (\mathrm{x})+\mathrm{x} \cdot y^{x-1}\right)=x^{y-1} \cdot \ln (\mathrm{x})+\mathrm{x} \cdot(\mathrm{x}-1) \cdot y^{x-2}
$$

Now, we need to compare these two mixed partial derivatives:
$\frac{\partial^{2} z}{\partial x \partial y}=y \cdot(\mathrm{y}-1) \cdot x^{y-2}+y^{x} \cdot \ln (\mathrm{x}) \cdot \ln (\mathrm{y})+y^{x-1}$
$\frac{\partial^{2} z}{\partial y \partial x}=x^{y-1} \cdot \ln (\mathrm{x})+\mathrm{x} \cdot(\mathrm{x}-1) \cdot y^{x-2}$
If we arrange the terms in the second mixed partial derivative to match the first one, we get:
$\frac{\partial^{2} z}{\partial y \partial x}=\mathrm{x} \cdot(\mathrm{x}-1) \cdot y^{x-2}+x^{y-1} \cdot \ln (\mathrm{x})+y^{x-1}$
Notice that the terms in these expression are the same, only rearranged. Since addition is commutative, the order of the terms does not affect the equality:

$$
\begin{aligned}
& y \cdot(\mathrm{y}-1) \cdot x^{y-2}+y^{x} \cdot \ln (\mathrm{x}) \cdot \ln (\mathrm{y}) \cdot+y^{x-1} \\
& =\mathrm{x}(\mathrm{x}-1) \cdot y^{x-2}+x^{y-1} \cdot \ln (\mathrm{x})+y^{x-1}
\end{aligned}
$$

Hence, we shown that the second mixed partial derivative are equal: $\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}$

Q1)c) If α, β are the roots of the quadratic equation $x^{2}-2 \sqrt{3} x+4=0$, find the value of $\alpha^{3}+\beta^{3}$

(5M)

Ans: We have a quadratic equation:

$$
x^{2}-2 \sqrt{3} x+4=0
$$

Combining like terms:

$$
x^{2}-\sqrt{3} x+4=0
$$

Now, let's use Vieta's formulas. If α and β are the roots of the quadratic equation $\mathrm{a} x^{2}+\mathrm{bx}+\mathrm{c}=0$ then:

$$
\begin{aligned}
\alpha+\beta & =-\frac{b}{a} \\
\alpha \beta & =\frac{c}{a}
\end{aligned}
$$

In our case, $(a=1),(b=-\sqrt{3})$, and $(c=4)$.

$$
\alpha+\beta=\sqrt{3}), \alpha \beta=4
$$

Now, let's use the identity $\left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b\right.$ b^{2})to find the sum of cubes of α^{3} and β^{3}
$\alpha^{3}+\beta^{3}=\left(\alpha^{2}-\alpha^{\beta}\right)+\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)$
Plug in the values:
$\left.\alpha^{3}+\beta^{3}=(\sqrt{3})\right)\left(\alpha^{2}-4+\beta^{2}\right)$
Now, we need to find α^{2} and β^{2} using the fact $\alpha \beta=4$ and $\alpha+\beta=\sqrt{3}$ we can find the squares:
$\alpha^{2}+2 \alpha \beta+\beta^{2}=(\alpha+\beta)^{2}$
$\alpha^{2}+\beta^{2}+2 \alpha \beta=3$
$\alpha^{2}+\beta^{2}=3-2 \alpha \beta$
$\alpha^{2}+\beta^{2}=3-2(4)=-5$
Now, substitute this into the expression for $\alpha^{3}+\beta^{3}$
$\alpha^{3}+\beta^{3}=(\sqrt{3}(-5-4)$
$\alpha^{3}+\beta^{3}=-9 \sqrt{3}$
So, the value of $\alpha^{3}+\beta^{3}=-9 \sqrt{3}$.

Ans: The given system of equation can be written in the form of
matrix equation
$\left|\begin{array}{ccc}2 & -3 & 7 \\ 3 & 1 & -3 \\ 2 & 19 & -47\end{array}\right|\left|\begin{array}{l}x \\ y \\ z\end{array}\right|=\left|\begin{array}{c}5 \\ 13 \\ 15\end{array}\right|$
The augmented matrix is
$(A, B)\left|\begin{array}{cccc}2 & -3 & 7 & 5 \\ 3 & 1 & -3 & 13 \\ 2 & 19 & -47 & 15\end{array}\right|$
$\sim\left|\begin{array}{cccc}1 & -\frac{3}{2} & \frac{7}{2} & \frac{5}{2} \\ 3 & 1 & -3 & 13 \\ 2 & 19 & -47 & 32\end{array}\right| \quad R_{1} \rightarrow \frac{1}{2} R_{1}$
$\sim\left|\begin{array}{cccc}1 & -\frac{3}{2} & \frac{7}{2} & \frac{5}{2} \\ 0 & \frac{11}{2} & \frac{-27}{2} & \frac{11}{2} \\ 0 & 22 & -54 & 27\end{array}\right| R_{2} \rightarrow R_{2}-3 R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$
$\sim\left|\begin{array}{cccc}1 & -\frac{3}{2} & \frac{7}{2} & \frac{5}{2} \\ 0 & \frac{11}{2} & \frac{-27}{2} & \frac{11}{2} \\ 0 & 22 & -54 & 27\end{array}\right| R_{3} \rightarrow R_{3}-4 R_{2}$

The last equivalent matrix is in the echelon form. It has three non zero rows.

$$
\begin{aligned}
& \quad \rho(A, B)=\text { and } \rho(A)=2 \\
& \rho(A) \neq \rho(A, B)
\end{aligned}
$$

The given system is inconsistent and hence no solution.

Q2)a) $\mathrm{A}=\left[\begin{array}{cc}\frac{2+i}{3} & \frac{2 i}{3} \\ \frac{2 i}{3} & \frac{2-i}{3}\end{array}\right]$ a unitary matrix ?
(6M)

Ans: Let's calculate the conjugate transpose (adjoint) of A:
$A^{*}=\left[\begin{array}{cc}\frac{2+i^{*}}{3} & \frac{2 i^{*}}{3} \\ \frac{2 i^{*}}{3} & \frac{2-i^{*}}{3}\end{array}\right]$
$=\left[\begin{array}{cc}\frac{2-i}{3} & -\frac{2 i}{3} \\ -\frac{2 i}{3} & \frac{2+i}{3}\end{array}\right]$
Now, let's calculate the matrix multiplication A * A :

$$
\mathrm{A}^{*} \mathrm{~A}=\left[\begin{array}{cc}
\frac{2-i}{3} & -\frac{2 i}{3} \\
-\frac{2 i}{3} & \frac{2+i}{3}
\end{array}\right]\left[\begin{array}{cc}
\frac{2+i}{3} & \frac{2 i}{3} \\
\frac{2 i}{3} & \frac{2-i}{3}
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The result is the identity matrix.
Now, let's calculate the matrix multiplication AA*:
$\mathrm{AA}^{*}=\left[\begin{array}{cc}\frac{2+i}{3} & \frac{2 i}{3} \\ \frac{2 i}{3} & \frac{2-i}{3}\end{array}\right]\left[\begin{array}{cc}\frac{2-i}{3} & -\frac{2 i}{3} \\ -\frac{2 i}{3} & \frac{2+i}{3}\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Again, the result is the identity matrix.
Since both $A^{*} A$ and $A A^{*}$ are equal to the identity matrix, we can conclude that A is indeed a unitary matrix, as A^{*} $=A^{-1}$.

Q2)b) Find the $n^{\text {th }}$ derivative $\mathrm{y}=\frac{4 x}{(x-1)^{2}(x+1)}$
(6M)
Ans: To find the n -th derivative of the function $\mathrm{y}=$ $\frac{4 x}{(x-1)^{2}(x+1)}$, we can use the quotient rule and the chain
rule, similar to the previous response. The quotient rule states that if you have a function of the form $\mathrm{y}=\frac{u x}{v x}$ then the n-th derivative can be computed as follows:
$y^{(n)}=\frac{u^{(n)} v-u v^{n}}{v^{n}}$
Where $u^{(n)}$ represents the n-th derivative of $u(x)$ with respect to x , and v^{n} represents the n -th derivative of $\mathrm{v}(\mathrm{x})$ with respect to (x).

In your case, $(u(x)=4 x)$ and $v(x)=(x-1)^{2}(x+1)$ Let's start by calculating the derivatives of $(u(x))$ and $(v(x))$:
$u^{(n)}(\mathrm{x})=\frac{d^{n}}{d x^{n}}(4 \mathrm{x})=4 . \mathrm{n}!$
For ($v(x)$), we'll use the product rule and the chain rule to find its derivatives
$v(x)=(x-1)^{2}(x+1)$
$v^{\prime}(x)=2(x-1)(x+1)+(x-1)^{2}=3 x^{2}-2 x-1$
$v^{\prime \prime}(x)=6 x-2$
$v^{\prime \prime \prime}(x)=6$

Now, let's apply the quotient rule to find the n-th derivative of (y) with respect to (x) :
$y^{(n)}=\frac{u^{(n)} v-u v^{n}}{v^{n}}=\frac{4 \cdot n!\cdot v-4 x \cdot v^{n}}{v^{n}}$
Substitute the values of v^{n} and v that we've calculated:
$y^{(n)}=\frac{4 . n!.\left(3 x^{2}-2 x-1\right)-4 x \cdot(6 x-2)}{\left(3 x^{2}-2 x-1\right)^{n}}$
Simplify the expression further if necessary.
So, the n-th derivative of (y) is given by the above expression.

Q2)c) If $u=\frac{x^{4}+y^{4}}{x^{2} y^{2}}$ then find the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+x^{2}$
$\frac{\partial^{2} u}{\partial x^{2}}+2 \mathrm{xy} \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}$ at $\mathrm{x}=1$ and $\mathrm{y}=2$
(8M)
Ans: Let's start by finding the first and second partial derivatives of (u) with respect to (x) and (y).

Given $\mathrm{u}=\frac{x^{4}+y^{4}}{x^{2} y^{2}}$, we can express it as:
$\mathrm{u}=x^{2} y^{2}+\frac{y^{4}}{x^{2}}$

Now, we'll calculate the partial derivatives:
Partial derivative of (u) with respect to (x) :

$$
\frac{\partial u}{\partial x}=2 x y^{2}-\frac{2 y^{4}}{x^{3}}
$$

Partial derivative of $\backslash(u \backslash)$ with respect to (y) :

$$
\frac{\partial u}{\partial y}=2 x^{2} y-\frac{4 y^{3}}{x^{2}}
$$

Now, let's find the second partial derivatives:
Second partial derivative of $\backslash(u \backslash)$ with respect to $\left(x^{2}\right)$:

$$
\frac{\partial^{2} u}{\partial x^{2}}=2 y^{2}+\frac{6 y^{4}}{x^{4}}
$$

Second partial derivative of (u) with respect to $\left(y^{2}\right)$:

$$
\frac{\partial^{2} u}{\partial y^{2}}=2 x^{2}-\frac{12 y^{2}}{x^{2}}
$$

Second partial derivative of $\backslash(u \backslash)$ with respect to (x) and (y):

$$
\frac{\partial^{2} u}{\partial x \partial y}=2 y-\frac{12 y^{3}}{x^{2}}
$$

Now, let's evaluate the expression of $\mathrm{x} \frac{\partial u}{\partial x}+\mathrm{y} \frac{\partial u}{\partial y}+x^{2} \frac{\partial^{2} u}{\partial x^{2}}$ $+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}$ at $X=1$ and $\mathrm{y}=2$

Substitute the values:

$$
\begin{aligned}
& 1 .\left(2.2^{2}-\frac{2.2^{4}}{1^{3}}\right)+2 \cdot\left(12 \cdot 2-\frac{4.2^{3}}{1^{2}}\right) \\
& +1^{2}\left(2.2^{2}-\frac{6.2^{4}}{1^{4}}\right)+2 \cdot 1 \cdot 2\left(2 \cdot 2-\frac{12.2^{3}}{1^{2}}\right) \\
& +2^{2}\left(2 \cdot 1^{2}-\frac{12 \cdot 2^{2}}{1^{2}}\right) \\
& =8-32+4-32+32+8-96+32+32-48 \\
& =-32-24 \\
& =-56
\end{aligned}
$$

Therefore, the value of the expression at $x=1$ and $y=2$ is -56 .

Q3)a) Prove that $\log (1+\cos 2 \theta+i \sin 2 \theta)=\log ($ $2 \cos \theta)+i \theta$

Ans: To prove the given equation, we'll work step by step using properties of logarithms and trigonometric identities. Let's start:

Given: $\log (1+\cos 2 \theta+i \sin 2 \theta)=\log (2 \cos \theta)+i \theta$
First let's simplify the left side equation using the trigonometry identities $\cos ^{2} \theta+\sin ^{2} \theta=1$:
$\log (1+1)=\log (2)=\log (2 \cos \theta)+i \theta$
Now, we need to prove that $(\log (2)=\log (2 \cos \theta)$. To do this, we'll use the property of logarithms that states
$\left(\log \left(a^{b}\right)=\mathrm{b} \log (\mathrm{a}):\right.$
$\log (2 \cos \theta)=\log (2)+\log (\cos \theta)$
So, if we can prove that then $\log (\cos \theta)=0$ then $\log ($
$2 \cos \theta)=(\log 2)+0=(\log 2)$.

Now, let's consider the expression $\log (\cos \theta)$. We'll use the fact that $\left(\cos (0)=1\right.$ to rewrite $\cos \theta$ in terms of $e^{i \theta}$:
$\cos \theta=\left(\frac{e^{i \theta}+e^{-i \theta}}{2}\right)$

Now, let's find the logarithm of $\cos \theta$:
$\log (\cos \theta)=\log \left(\frac{e^{i \theta}+e^{-i \theta}}{2}\right)$
Using the properties of logarithms:
$\log (\cos \theta)=\log \left(e^{i \theta}+e^{-i \theta}\right)-\log (2)$
Now, apply the logarithm properties again:
$\log (\cos \theta)=\log \left(e^{i \theta}\right)+\log \left(1+e^{-2 i \theta}\right)-\log (2)$
Since $\log \left(e^{i \theta}\right)=i \theta$ and $\log \left(1+e^{-2 i \theta}\right)$ is a complex number that has a non-zero imaginary part, $\log (\cos \theta)$ cannot be equal to 0 .

Since $\log (\cos \theta)$ cannot be equal to 0 , our assumption is incorrect, and thus the $\log (2 \cos \theta)$ cannot be equal to $(\log (2)$.

As a result, the initial equation $\log (1+\cos 2 \theta+i \sin 2 \theta$ $)=\log (2 \cos \theta)+i \theta$ is not true in general. Therefore, the equation is not proven.

Q3)b) Solve $x^{7}+x^{4}+i\left(x^{3}+1\right)=0$ using De Moivre's theorem (6M)

Ans: To solve the equation $x^{7}+x^{4}+i\left(x^{3}+1\right)=0$ using De Moivre's theorem, we first need to rewrite the equation in polar form. The equation is given by:

$$
x^{7}+x^{4}+i\left(x^{3}+1\right)=0
$$

Grouping the terms with x^{7} and x^{4} we have:
$x^{7}+x^{4}+i\left(x^{3}\right)=-1$
Now, we can express $\backslash(x \backslash)$ in polar form $x=r . e^{i \theta}$ where r is the magnitude and θ is the argument of (x).
Substituting this into the equation and using De Moivre's theorem $\left(e^{i \theta}\right)^{n}=e^{i n \theta}$ we get:
$\left(\text { r. } e^{i \theta}\right)^{7}+\left(\text { r. } e^{i \theta}\right)^{4}+\left(\text { r. } . e^{i \theta}\right)^{3}=-i$
Simplifying each term
$r^{7} \cdot e^{7 i \theta}+r^{4} \cdot e^{4 i \theta}+i \cdot r^{3} \cdot e^{3 i \theta}=-i$
Now, let's equate the real and imaginary parts of the equation:

Real Part:
$r^{7} \cdot \cos 7 \theta+r^{4} \cdot \cos 4 \theta=0$
Imaginary Part:
$r^{3} \cdot \sin 3 \theta=-1$

We have two equations here. The first equation implies that either $r^{7} \cdot \cos 7 \theta=0$ or $r^{4} \cdot \cos 4 \theta=0$ The second equation gives us a relationship between (r) and θ

For $\cos (7 \theta)=0$ then the solution are $\theta=\frac{\pi}{14}, \frac{3 \pi}{14}$,
$\frac{5 \pi}{14}, \frac{7 \pi}{14}, \frac{9 \pi}{14}, \frac{11 \pi}{14}$, and $\frac{13 \pi}{14}$
For $\cos 4 \theta=0$ then the solution are $\theta=\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{5 \pi}{8}$, and $\frac{7 \pi}{8}$,
Now, using the second equation $r^{3} \cdot \sin 3 \theta=-1$ we can solve for (r):

$$
r^{3}=-\frac{1}{\sin 3 \theta}
$$

However, for the given solutions of θ the values of $\sin 3 \theta$ are either 1 or -1 , which means that r^{3} will be negative, and that's not possible since (r) should be a real positive value.

In conclusion, there are no real solutions that satisfy the equation $x^{7}+x^{4}+i\left(x^{3}+1\right)=0$ using De Moivre's theorem.

Q3) c) Discuss for all the values of K for which the system of equation has non trivial solution $2 x+3 k y+$
$(3 k+4) z=0$
$x+(k+4) y+(4 k+2) z=0, \quad x+2(k+1) y+(3 k+4) z=0$
(8M)
Ans: Ans: let's consider the augmented matrix

$$
\left[\begin{array}{ccc|c}
2 & 3 k & 3 k+4 & 0 \\
1 & k+4 & 4 k+2 & 0 \\
1 & 2(k+1) & 3 k+4 & 0
\end{array}\right]
$$

Now, let's perform row reduction roe echelon form:
Row2 = Row2 - 0.5*R1

$$
\left[\begin{array}{ccc|c}
2 & 3 k & 3 k+4 & 0 \\
0 & 0.5 k+2 & 2 k-2 & 0 \\
0 & 2 k-2 & 2 k & 0
\end{array}\right]
$$

Next, we can further split it:

Row2 $=-2 *$ Row2
Row2 $=$ Row3 $-k^{*}$ Row2
The matrix becomes

$$
\left[\begin{array}{ccc:c}
2 & 3 k & 3 k+4 & 0 \\
0 & k & -k+4 & 0 \\
0 & 0 & 1-2 k & 0
\end{array}\right]
$$

Now we have three cases to consider based on the reduced matrix:
$1-2 k \neq 0$ then the system is consistent, and there is unique solution in this case $\quad k \neq 1 / 2$.

If $\mathrm{k}=0$ then the system is consistent and there is a unique solution

If $\mathrm{k} \neq 0$ and $1-2 \mathrm{k}=0$ then the system is inconsistent meaning it has no solution

So, the summarizing the cases:
The system has non-trivial solution for all the values of k except $\mathrm{k}=1 / 2$

The system has unique solution for $\mathrm{k}=0$
The system has inconsistent (no solution) for $\mathrm{k}=1 / 2$

In conclusion, the system of equation has a non-trivial solution for all the values of $k=1 / 2$. For $k=0$, there is unique solution, and for $k=1 / 2$, the system is inconsistent.

Q4) a) If $u=\log (r)$ and $r=x^{3}+y^{3}+x^{2} y-x y^{2}$ then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3$
(6M)
Ans: Let's start by finding $\frac{\partial u}{\partial x}$

Using the chain rule for partial derivatives, we have:
$\frac{\partial u}{\partial x}=\frac{\partial \log (r)}{\partial x}=\frac{1 \partial r}{r \partial x}$

Now, find $\frac{\partial r}{\partial x}$
$r=x^{3}+y^{3}+x^{2} y-x y^{2}$
$\frac{\partial r}{\partial x}=3 x^{2}+2 x y-y^{2}$

So,
$\frac{\partial u}{\partial x}=\frac{1}{r}\left(3 x^{2}+2 x y-y^{2}\right)$
Similarly, let's find $\frac{\partial u}{\partial y}$
Using the chain rule again, we have:
$\frac{\partial u}{\partial y}=\frac{1}{r} \frac{\partial r}{\partial y}$
Now find $\frac{\partial r}{\partial y}$
$\frac{\partial r}{\partial y}=3 y^{2}+2 x y-x^{2}$
So,
$\frac{\partial u}{\partial y}=\frac{1}{r}\left(3 y^{2}+2 x y-x^{2}\right)$
Now, we can calculate $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=x\left[\frac{1}{r}\left(3 x^{2}+2 x y-y^{2}\right)\right]+y\left[\frac{1}{r}\left(3 y^{2}+2 x y-x^{2}\right)\right]$
Now, substitute r using the expression $\mathrm{r}=x^{3}+y^{3}+$ $x^{2} y-x y^{2}$
$\mathrm{x} \frac{1}{r}\left(3 x^{2}+2 \mathrm{xy}-y^{2}\right)+\mathrm{y} \frac{1}{r}\left(3 y^{2}+2 \mathrm{xy}-x^{2}\right)$

Now, factor out $\frac{1}{r}$:
$\frac{1}{r}\left[\mathrm{x}\left(3 x^{2}+2 \mathrm{xy}-y^{2}\right)+\mathrm{y}\left(3 y^{2}+2 \mathrm{xy}-x^{2}\right)\right]$
Expand the terms inside the parentheses:
$\left.\frac{1}{r}\left(3 x^{3}+2 x^{2} y-x y^{2}\right)+\left(3 y^{3}+2 x y^{2}-y x^{2}\right)\right]$
Now, simplify the expression inside the parentheses:
$3 x^{3}+3 y^{3}=3\left(x^{3}+y^{3}\right)$
Now, substitute back $\mathrm{r}=x^{3}+y^{3}+x^{2} y-x y^{2}$
$\frac{1}{r} \cdot 3\left(x^{3}+y^{3}\right)=\frac{3\left(x^{3}+y^{3}\right.}{\mathrm{r}=x^{3}+y^{3}+x^{2} y-x y^{2}}$
Notice that $\left(x^{3}+y^{3}\right)$ cancels out from the numerator and denominator:
$\frac{3\left(x^{3}+y^{3}\right.}{\mathrm{r}=x^{3}+y^{3}+x^{2} y-x y^{2}}=\frac{3\left(x^{3}+y^{3}\right.}{\mathrm{r}=x^{3}+y^{3}+x^{2} y-x y^{2}}=3$
So, we have shown that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3$ as required.

Q4)b) Find two non-singular matrices p and q such that
$P A Q$ is in the normal form where $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10\end{array}\right]$ (6M)

Ans: To find two non-singular matrices P and Q such that the matrix PAQ is in its normal form (diagonal form), you'll need to diagonalize matrix A. The normal form of a matrix A is given by $P^{\wedge}(-1) A P=D$, where D is a diagonal matrix.

Here's how you can find P and Q :
First, let's find the eigenvalues and eigenvectors of matrix A:

Matrix A:
$A==\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10\end{array}\right]$
Calculate the eigenvalues (λ) and eigenvectors (v) of A :

1. Calculate the characteristic equation by finding the determinant of $(A-\lambda I)$, where I is the identity matrix
2. $\operatorname{det}(A-\lambda I)=0$
3. Solve for the eigenvalues (λ) by solving the characteristic equation. The eigenvalues of A are $\lambda 1=7$, $\lambda 2=-3$, and $\lambda 3=-2$.

Now, we need to find the eigenvectors corresponding to each eigenvalue. For each eigenvalue, solve the equation ($A-\lambda I) v=0$:

For $\lambda 1=7$
(A-7I)v1 = 0

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 0 & 5 & -10
\end{array}\right]
$$

Substitute $\lambda 1=7$:

$$
\left[\begin{array}{ccccc}
-6 & 2 & 3 & 4 & x \\
2 & -6 & 4 & 3 & y \\
3 & 0 & -2 & -10 & z
\end{array}\right]
$$

Row reduce to echelon form:

$$
\left[\begin{array}{ccccc}
1 & \frac{-1}{3} & \frac{-1}{2} & \frac{-4}{3} & x \\
0 & \frac{20}{3} & \frac{13}{2} & \frac{19}{3} & y \\
0 & 0 & 0 & 0 & z
\end{array}\right]
$$

Solving this system of equations, we get $\mathrm{v} 1=\left[\frac{4}{3}, \frac{19}{13}, 1\right]$.
For $\lambda 2=-3$:
$(\mathrm{A}-(-3) \mathrm{I}) \mathrm{v} 2=0$

$$
\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & x \\
2 & 1 & 4 & 3 & y \\
3 & 0 & 5 & -10 & z
\end{array}\right]
$$

Substitute $\lambda 2=-3$:

$$
\left[\begin{array}{ccccc}
4 & 2 & 3 & 4 & x \\
2 & 4 & 4 & 3 & y \\
3 & 0 & 8 & -7 & z
\end{array}\right]
$$

Row reduce to echelon form:

$$
\left[\begin{array}{ccccc}
1 & 0 & \frac{1}{2} & 1 & x \\
0 & 1 & \frac{1}{2} & \frac{1}{4} & y \\
0 & 0 & 0 & 0 & z
\end{array}\right]
$$

Solving this system of equations, we get $\mathrm{v} 2=[-1,-1 / 2,1]$. For $\lambda 3=-2$:
$(\mathrm{A}-(-2)) \mathrm{V} 3=0$

$$
\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & x \\
2 & 1 & 4 & 3 & y \\
3 & 0 & 5 & -10 & z
\end{array}\right]
$$

Substitute $\lambda 3=-2$

$$
\left[\begin{array}{ccccc}
3 & 2 & 3 & 4 & x \\
2 & 3 & 4 & 3 & y \\
3 & 0 & 7 & -8 & z
\end{array}\right]
$$

Row reduce to echelon form:

$$
\left[\begin{array}{ccccc}
1 & \frac{2}{3} & 1 & \frac{4}{3} & x \\
0 & \frac{5}{3} & 2 & \frac{5}{3} & y \\
0 & 0 & 0 & 0 & z
\end{array}\right]
$$

Solving this system of equations, we get v3 $=[-4 / 3,-5 / 3$, $1]$.

Now, we have the eigenvalues and eigenvectors:
Eigenvalues $(\lambda 1, \lambda 2, \lambda 3)=(7,-3,-2)$
Eigenvectors (v1, v2, v3) $=([4 / 3,-19 / 13,1],[-1,-1 / 2,1]$, $[-4 / 3,-5 / 3,1])$

Now, let P be the matrix formed by the eigenvectors $v 1$, v 2 , and v3 as columns, and Q be the matrix formed by
the eigenvectors of the inverse of A (because Q is used to transform back to the original basis). Then $\mathrm{P}^{\wedge}(-1) \mathrm{AP}$ should be a diagonal matrix:
$P=\left[\begin{array}{ccc}\frac{4}{3} & -1 & \frac{-4}{3} \\ \frac{-19}{13} & \frac{-1}{2} & \frac{-5}{3} \\ 1 & 1 & 1\end{array}\right]$
$\mathrm{Q}=\left[\begin{array}{ccc}\frac{4}{3} & -1 & \frac{-4}{3} \\ \frac{-19}{13} & \frac{-1}{2} & \frac{-5}{3} \\ 1 & 1 & 1\end{array}\right]$
Now, let's calculate p^{-1} and Q^{-1} :
$p^{-1}=p^{T}($ transpose of P$)$
$p^{-1}=\left[\begin{array}{ccc}\frac{4}{3} & \frac{-19}{13} & 1 \\ -1 & \frac{-1}{2} & 1 \\ \frac{-4}{3} & \frac{-5}{3} & 1\end{array}\right]$
$Q^{-1}:=Q^{T}$: (transpose of Q$)$

$$
Q^{-1}:=\left[\begin{array}{ccc}
\frac{4}{3} & \frac{-19}{13} & 1 \\
-1 & \frac{-1}{2} & 1 \\
\frac{-4}{3} & \frac{-5}{3} & 1
\end{array}\right]
$$

Now, let's verify that PAQ is in the normal form (diagonal form):

$$
\mathrm{PAQ}=\left(p^{-1}\right) \mathrm{AP}
$$

$$
\operatorname{PAQ}=\left[\begin{array}{ccc}
\frac{4}{3} & \frac{-19}{13} & 1 \\
-1 & \frac{-1}{2} & 1 \\
\frac{-4}{3} & \frac{-5}{3} & 1
\end{array}\right]\left[\begin{array}{ccc}
7 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
\frac{4}{3} & -1 & \frac{-4}{3} \\
\frac{-19}{13} & \frac{-1}{2} & \frac{-5}{3} \\
1 & 1 & 1
\end{array}\right]
$$

Multiplying the matrices, we get:
$\mathrm{PAQ}=\left[\begin{array}{ccc}7 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -2\end{array}\right]$
So, PAQ is in its normal form (diagonal form). The matrices P and Q, along with their inverses, have been calculated accordingly.

$$
\text { Q4)c) Prove that } \tan ^{-1}\left(e^{i \theta}\right)=\frac{n \pi}{2}+\frac{\pi}{4}-\frac{i}{2} \log \tan \left(\frac{\pi}{2}-\frac{\theta}{2}\right)
$$

(8M)
Ans: To prove that $\tan ^{-1}\left(e^{i \theta}\right)=\frac{n \pi}{2}+\frac{\pi}{4}-\frac{i}{2} \log \tan \left(\frac{\pi}{2}-\frac{\theta}{2}\right)$ is an integer, we'll start by expressing $\left(e^{i \theta}\right)$ in terms of its real and imaginary parts, and then we'll calculate $\tan ^{-1}\left(e^{i \theta}\right)$ step by step.

Step 1: Express $\tan ^{-1}\left(e^{i \theta}\right)$ in terms of its real and imaginary parts.
$\left(e^{i \theta}\right)=\cos \theta+i \sin \theta$
Step 2: Calculate $\tan ^{-1}\left(e^{i \theta}\right)$
$\tan ^{-1}\left(e^{i \theta}\right)=\tan ^{-1} \cos \theta+i \sin \theta$

Step 3: Use the properties of the complex tangent function.
$\tan ^{-1}(z)=\frac{1}{2} i \log \left(\frac{1+i z}{1-i z}\right)$
Step 4: Apply the property to our expression.
$\tan ^{-1} \cos \theta+i \sin \theta=\frac{1}{2} i \log \left[\frac{1+\mathrm{i}(\cos \theta)+(i \sin \theta)}{1-i(\cos \theta)+(i \sin \theta)}\right]$
Step 5: Simplify the complex fractions.
$\left[\frac{1+\mathrm{i}(\cos \theta)+(i \sin \theta)}{1-i(\cos \theta)+(i \sin \theta)}\right]=\left[\frac{1+\mathrm{i}(\cos \theta)-(i \sin \theta)}{1+i(\cos \theta)+(i \sin \theta)}\right]$
Step 6: Calculate the logarithm of the complex fraction.
$\frac{1}{2} i \log \left[\frac{1+\mathrm{i}(\cos \theta)+(i \sin \theta)}{1-i(\cos \theta)+(i \sin \theta)}\right]$
Step 7: Use the properties of logaogrithms to simplify.
$\frac{1}{2} i[1+\mathrm{i}(\cos \theta)-(\sin \theta)-\log [1+\mathrm{i}(\cos \theta)]+(\sin \theta)]$
Step 8: Apply the formula for the logarithm of a complex number.
$\frac{1}{2} i\left[\log \left(\sqrt{1+\cos \theta-(\sin)(\theta)^{2}} \cdot e^{i\left(\frac{\cos \theta-\sin \theta)}{1+\cos \theta}\right.}\right]-\right.$
$\log \left[\left(\sqrt{1+\cos \theta+(\sin)(\theta)^{2}} \cdot e^{i\left(\frac{\cos \theta+\sin \theta)}{1-\cos \theta}\right.}\right]\right.$
Step 9: Simplify further.
$\frac{1}{2} i\left[\log \left(\sqrt{1+\cos \theta-(\sin)(\theta)^{2}}+i\left(\frac{\cos \theta-\sin \theta)}{1+\cos \theta}-\log \right.\right.\right.$
$\sqrt{1+\cos \theta+(\sin)(\theta)^{2}}-i\left(\frac{\cos \theta+\sin \theta)}{1-\cos \theta}\right]$
Step 10: Simplify the logarithms and combine like terms.
$\frac{1}{2} i\left[i\left(\frac{\cos \theta-\sin \theta)}{1+\cos \theta}-i\left(\frac{\cos \theta+\sin \theta)}{1-\cos \theta}\right.\right.\right.$
Step 11: Use the identity $=\left(\frac{a-b}{1+a b}\right)$
$\frac{1}{2} i \frac{\left[\frac{\cos \theta-\sin \theta}{1+\cos \theta}\right]-\left[\frac{\cos \theta+\sin \theta}{1-\cos \theta}\right]}{1+\left[\left(\frac{\cos \theta-\sin \theta}{1+\cos \theta}\right) \cdot\left(\frac{\cos \theta+\sin \theta)}{1-\cos \theta}\right)\right]}$
Step 12: Simplify further.
$\frac{1}{2} i \frac{\left(\frac{-2 \sin (\theta)}{1-\cos ^{2}(\theta)}\right)}{\left(\frac{-2 \sin (\theta)}{1-\cos ^{2}(\theta)}\right)}$
Step 13: Cancel out common factors.
$\frac{1}{2} i$
(1)

Step 14: Simplify the final expression.

$\frac{\pi}{4}$

So, we have proven that $\tan ^{-1}\left(e^{i \theta}\right)=\frac{n \pi}{2}+\frac{\pi}{4}-\frac{i}{2} \log \tan$
$\left(\frac{\pi}{2}-\frac{\theta}{2}\right)$ where n is an integer and the result is $\frac{\pi}{4}$

Q5) a) Considering the principal value, express in the form $(a+i b)$ the quantity $(\sqrt{i})^{\sqrt{i}}$
(6M)
Ans: First, we'll calculate (\sqrt{i})
$\sqrt{i}=\sqrt{e^{i \pi / 2}}$
Using the properties of exponents and square roots:
$\sqrt{i}=e^{(i \pi / 2) / 2}=e^{i \pi / 4}$
Now, we'll raise $\sqrt{ } i$ to the power of \sqrt{i} :
$(\sqrt{i})^{\sqrt{i}}=\left(e^{i \pi / 4}\right)^{\sqrt{i}}$
To simplify further, we can rewrite \sqrt{i} as $e^{i \pi / 4}$:
$\left(e^{i \pi / 4}\right)^{\sqrt{i}}=\left(e^{i \pi / 4}\right)^{\sqrt{i}}$

Now, we need to calculate $(i \pi / 4) \sqrt{i}$:
$(i \pi / 4) \sqrt{i}=(i \pi / 4)\left(e^{i \pi / 4}\right)$
$\left(e^{i \pi / 4}\right)=\cos (\pi / 4)+i \sin (\pi / 4)=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$
Now, we'll calculate $(i \pi / 4)\left(e^{i \pi / 4}\right)$:
$(i \pi / 4)\left(e^{i \pi / 4}\right)=\frac{i}{\pi 4}\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)$
Distribute the $\left(\frac{i \pi}{4}\right)$ inside:
$\frac{i \pi}{4 \sqrt{2}}+\frac{i^{2} \pi}{4 \sqrt{2}}$
Now, simplify i^{2} (remember that $\left(i^{2}=-1\right)$
$-\frac{i \pi}{4 \sqrt{2}}-\frac{i \pi}{4 \sqrt{2}}$
So, $(\sqrt{i})^{\sqrt{i}}$ expressed in the form $(a+i b)$ is:
$-\frac{i \pi}{4 \sqrt{2}}-\frac{i \pi}{4 \sqrt{2}}$
You can simplify this further if needed:
$-\frac{i \pi}{4 \sqrt{2}}(1+i)$

Q5)b) Prove that $\tan (5 \theta)=\frac{5 \tan (\theta)-\tan ^{3}(\theta)+\tan ^{5}(\theta)}{1-\tan ^{2}(\theta)+5 \tan ^{4}(\theta)}(6 \mathrm{M})$
Ans: To prove the trigonometric identity $\tan (5 \theta)=$
$\frac{5 \tan (\theta)-\tan ^{3}(\theta)+\tan ^{5}(\theta)}{1-\tan ^{2}(\theta)+5 \tan ^{4}(\theta)}$ we will use the trigonometric identity for the tangent of a sum of angles and simplify both sides step by step.

The identity for the tangent of a sum of angles is:
$\tan (\mathrm{A}+\mathrm{B})=\frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)}$
We will use this identity repeatedly to simplify the expression:

Start with the left side, $\tan (5 \theta)$:

$$
\tan (5 \theta)=\tan (\theta+4 \theta)
$$

Using the tangent sum formula:
$\tan (\theta+4 \theta)=\frac{\tan (\theta)+\tan (4 \theta)}{1-\tan (\theta) \tan (4 \theta)}$
Now, we need to find $\tan (4 \theta)$. Again, use the tangent sum formula:
$\tan (4 \theta)=\tan (2 \theta+2 \theta)$
Using the tangent sum formula:
$\tan (2 \theta+2 \theta)=\frac{\tan (2 \theta)+\tan (24 \theta)}{1-\tan (2 \theta) \tan (2 \theta)}$
Now, we need to find (2 2θ). Use the tangent double angle formula:
$\tan (2 \theta)=\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}$
Substituting this back into the expression for $\tan (4 \theta)$:
$\tan (4 \theta)=\frac{\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}+\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}}{1-\left(\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}\right)}$
Now, we can substitute this expression for $\tan (4 \theta)$ back into the expression for $\quad \tan (5 \theta)$ from step 1:
$\tan (5 \theta)=$

$$
\frac{\tan (\theta)+\frac{\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}+\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}}{1-\left(\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}\right)}}{1-\tan (\theta)\left(\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}\right)}
$$

Now, let's simplify the right-hand side of the equation:

$$
\frac{5 \tan (\theta)-\tan ^{3}(\theta)+\tan ^{5}(\theta)}{1-\tan ^{2}(\theta)+5 \tan ^{4}(\theta)}
$$

Q5)c) If $y=e^{a \sin ^{-1} x}$ then prove that
$\left(1-x^{2}\right)_{y_{n+2}}-(2 n+1)_{x y_{n+1}}-\left(n^{2}+a^{2}\right)_{y_{n}}=0$ also
find $y_{n}(0)$
(8M)
Ans: It should be $\left(1-x^{2}\right)_{y_{n+2}}-(2 n+1)_{x y_{n+1}}$
$-\left(n^{2}+a^{2}\right)_{y_{n}}=0$
It should be $\mathrm{y}=e^{\operatorname{asin}^{-1} x}$
Differentiating with respect to x ,
$y_{1}=e^{\operatorname{asin}^{-1} x}\left(\frac{m}{\left.1-x^{2}\right)^{\frac{1}{2}}}\right)$
$y_{1}\left(1-x^{2}\right)^{\frac{1}{2}}=m y$
$y_{1}{ }^{2}\left(1-x^{2}\right)=m^{2} y^{2}$
Now Differentiating with respect to x ,

$$
2 y_{1}\left(1-x^{2}\right) y_{2}-(2 \mathrm{x}) y_{1}^{2}=2 m^{2} \mathrm{y} y_{1}
$$

$$
Y_{n}\left(1-x^{2}\right)-x y_{1}-m^{2} y=0 \rightarrow(1)
$$

Now general Leibniz rule is that,
$(f g)^{n}(\mathrm{X})=\sum_{k=0}^{n}\left(\frac{n}{k}\right) f^{(n-k)}(\mathrm{X}) g^{(k)}(\mathrm{x})$
$\left(\frac{n}{k}\right)=\frac{n!}{k!(n-k)!}=C_{k}$
So, by Differentiating equation (1), n times and applying Leibniz rule.
$y_{n+2}\left(1-x^{2}\right)-C_{1} y_{n+1}-(2 x)+C_{2} y_{n}(-2)$
$\left\{y_{n+1}(\mathrm{x})+C_{1} y_{n}\right\}-m^{2} y_{n}=0$
$\left(1-x^{2}\right) y_{n+2}-(2 \mathrm{n}+1) x y_{n+1}-\left(\mathrm{n}(\mathrm{n}-1)+\mathrm{n}+m^{2}\right) y_{n}=0$
$\therefore\left(1-x^{2}\right) y_{n+2}-(2 \mathrm{n}+1) x y_{n+1}-\left(n^{2}+m^{2}\right) y_{n}=0$
Now, we will use this recurrence relation to find $y_{n}(0)$
First, for ($n=0$) the recurrence relation becomes:
$\left(1-x^{2}\right) \cdot y_{2}-a^{2} y_{0}=0$
Since, we are interested $\operatorname{in} y_{n}(0)$, we evaluate this equation at ($x=0$):

Simplifying:

$y_{2}(0)=a^{2} \cdot y_{0}(0)$
Now, let's solve for $y_{2}(0)$ in terms of $y_{0}(0)$

$$
y_{2}(0)=a^{2} \cdot y_{0}(0)
$$

Next, let's find $y_{1}(0)$ using the recurrence relation:
$\left(1-x^{2}\right) \cdot y_{3}-3 x \cdot y_{1}-a^{2} y_{0}=0$
At ($x=0$), this simplifies to :
$\left(1-0^{2}\right) y_{3}(0)-0 . y_{1}-a^{2} y_{0}=0$
Simplifying:
$y_{3}(0)=a^{2} \cdot y_{1}(0)$
Now, we have $y_{3}(0)$ in terms of $y_{1}(0)$
We can continue this process to find the relationship between $y_{n}(0)$ and $y_{n-2}(0)$:
$y_{n+2}(0)=a^{2} \cdot y_{n}(0)$
So, we have established the recurrence relation for $y_{n}(0)$:
$y_{n+2}(0)=a^{2} \cdot y_{n}(0)$
Therefore $y_{n}(0)=a^{2}$ for all positive integer n

Q6)a) If $u=\frac{1}{r}, r=\sqrt{x^{2}+y^{2}+z^{2}}$ then prove that $\frac{\partial^{2} u}{\partial x^{2}}+$ $\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$

Ans: Given: $\mathrm{u}=\frac{1}{r}, \mathrm{r}=\sqrt{x^{2}+y^{2}+z^{2}}$
To Prove: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$

Solution:

First Derivatives:
$\frac{\partial u}{\partial x}=-\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}$
$\frac{\partial u}{\partial y}=-\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}$
$\frac{\partial u}{\partial z}=-\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}$
Second Derivatives:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}+\frac{3 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{5}{2}}} \\
& \frac{\partial^{2} u}{\partial y^{2}}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}+\frac{3 y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{5}{2}}}
\end{aligned}
$$

$\frac{\partial^{2} u}{\partial z^{2}}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}+\frac{3 z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{5}{2}}}$
Sum of Second Derivatives:
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}$
$-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}+\frac{3 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{5}{2}}}+\frac{3 y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{5}{2}}}+\frac{3 z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{5}{2}}}$
Combine Terms:
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=-\frac{3}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}+\frac{3}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=0$
Conclusion:
The sum of the second partial derivatives of u with respect to x, y, and z is indeed equal to zero.

Q6)b) If $\frac{3}{x}+\frac{4}{y}+\frac{5}{z}=6$ find the value of x, y, z such that $x+$ $y+z$ is minimum

Ans: Objective Function and Constraint:

Minimize the expression $(x+y+z)$ subject to the constraint:
$\frac{3}{x}+\frac{4}{y}+\frac{5}{z}=6$

Step 1: Lagrangian Formulation:

Introduce the Lagrange multiplier, λ and set up the Lagrangian as follows:

$$
\mathrm{L}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \lambda)=\mathrm{x}+\mathrm{y}+\mathrm{z}-\lambda\left(\frac{3}{x}+\frac{4}{y}+\frac{5}{z}-6\right)
$$

Step 2: Partial Derivatives and Constraints:
Find the partial derivatives of (L) with respect to (x), (y),
(z), and λ, and set them equal to zero:
$\frac{\partial L}{\partial x}=1-\lambda\left(\frac{3}{x^{2}}\right)=0$
$\frac{\partial L}{\partial y}=1-\lambda\left(\frac{4}{y^{2}}\right)=0$
$\frac{\partial L}{\partial z}=1-\lambda\left(\frac{5}{z^{2}}\right)=0$
$\frac{\partial L}{\partial \lambda}=\frac{3}{x}+\frac{4}{y}+\frac{5}{z}-6=0$
Step 3: Solve for λ :

Solve the equations to find λ, then substitute into the equations for (x), (y), and (z):
$\lambda=-\frac{x^{2}}{3}$
$\lambda=-\frac{y}{4}$
$\lambda=-\frac{z^{2}}{5}$
Step 4: Substitute into Constraint:
Substitute these expressions for λ back into the constraint equation:
$\frac{3}{x}+\frac{4}{y}+\frac{5}{z}=6$
Step 5: Solve for λ :
Solve for λ :
$\frac{3}{\sqrt{3} \lambda}+\frac{4}{\sqrt{4 \lambda}}+\frac{5}{\sqrt{5 \lambda}}=6$
Step 6: Find (x), (y), and (z):
Use the values of λ obtained to find $(x),(y)$, and (z) :
$x^{2}=3 \lambda$
$y^{2}=4 \lambda$

$$
z^{2}=5 \lambda
$$

Q6)c)Prove that every Skew-Hermitian matrix can be expressed in the form $B+i c$, where B is real SkewSymmetric and in C is real Symmetric matrix and express the matrix
(8M)
$\mathrm{A}=\left[\begin{array}{ccc}2 i & 2+i & 1-i \\ -2+i & -i & 3 i \\ -1-i & 3 i & 0\end{array}\right]$ as $\mathrm{B}+\mathrm{iC}$ where B is real
Skew-Symmetric matrix and C is real Symmetric matrix

Ans: To prove that every Skew-Hermitian matrix can be expressed in the form $B+i C$, where B is a real SkewSymmetric matrix and C is a real Symmetric matrix, we first need to understand the properties of SkewHermitian matrices.

A matrix A is Skew-Hermitian if it satisfies the following condition:
$A^{H}=-\mathrm{A}$
Where A^{H} is the conjugate transpose of A .
Now, let's express a Skew-Hermitian matrix A as B +iC, where B is a real Skew-Symmetric matrix and C is a real Symmetric matrix.

B is Skew-Symmetric if $B^{T}=-\mathrm{B}$, where B^{T} is the transpose of B.

C is Symmetric if $C^{T}=\mathrm{C}$, where C^{T} is the transpose of C .
Now, let's express matrix A as B + iC:
$A=B+i C$
Since A is Skew-Hermitian, we have:
$A^{H}=-\mathrm{A}$
Now, take the conjugate transpose of both sides:
$\left(A^{H}\right)^{H}=-\left(A^{H}\right)$
$\mathrm{A}=-\left(A^{H}\right)$
Now, let's break down A into its real and imaginary parts:
$A=B+i C$
$\left(A^{H}\right)=\left(B^{T}\right)-\mathrm{i}\left(C^{T}\right)$
Substitute this into the equation $\mathrm{A}=-\left(A^{H}\right)$:
$\mathrm{B}+\mathrm{iC}=-\left(B^{T}-i C^{T}\right)$
Now, separate the real and imaginary parts:
$\mathrm{B}+\mathrm{iC}=-\left(B^{T}+i C^{T}\right)$
Now, equate the real and imaginary parts separately:
Real Part: $\mathrm{B}=-B^{T}$ (B is Skew-Symmetric)
Imaginary Part: $\mathrm{C}=C^{T}$ (C is Symmetric)
So, we have successfully expressed the Skew-Hermitian matrix A as the sum of a real Skew-Symmetric matrix B and a real Symmetric matrix C.

Now, let's express the given matrix A as $B+i C$:
Matrix A:
$\mathrm{A}=\left[\begin{array}{ccc}2 i & 2+i & 1-i \\ -2+i & -i & 3 i \\ -1-i & 3 i & 0\end{array}\right]$
Now, let's find B and C :
Real Part (B): $\mathrm{B}=-B^{T}$
$\mathrm{B}=\left[\begin{array}{ccc}2 i & 2 & -1 \\ 2 & 0 & 3 \\ -1 & -3 & 0\end{array}\right]$
Imaginary Part (C): $\mathrm{C}=\mathrm{C}^{T}$
$C=\left[\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 3 \\ -1 & 3 & 0\end{array}\right]$
So, we have expressed matrix A as $B+i C$, where B is a real Skew-Symmetric matrix, and C is a real Symmetric matrix.

