BEE SOLUTION OF QUESTION PAPER REV 2019'C SCHEME (DEC2022)

Q1. Attempt any four

A) Derive the emf equation of DC machine

Solution:

Let,
$P=$ Number of poles of generator
$\Phi=$ Flux produced by each pole in weber (Wb)
A=Number of parallel paths in which the total number of conductors are divided.
$\mathrm{N}=$ Speed of armature in rpm
Z=Total number of armature conductors

For lap type of winding, $A=P$
For wave type of winding, $A=2$
According to Faraday's law of electromagnetic induction,
Average value of emf induced in single conductor $=\frac{d \Phi}{d t} \ldots$. (hence $\left.\mathrm{N}=1\right)$
Now, consider one revolution of a conductor. In one revolution, the conductor will cut the total flux produced by all the poles ($=P \Phi$).
Flux cut by the conductor in one revolution, $\mathrm{d} \Phi=\mathrm{P} \Phi$ weber
Time required to complete one revolution, $\mathrm{dt}=\frac{60}{\mathrm{~N}} \mathrm{sec}$

Hence, average value of emf induced in single conductor $=\frac{d \Phi}{d t}=\frac{P \Phi}{60 / N}=\frac{P \Phi \mathrm{~N}}{60}$ volt
This is the emf induced in one conductor. Now, the conductors in one parallel path are always in series. There are Z conductors with A parallel paths. Hence, $\frac{Z}{A}$ number of conductors are always in series and emf remains same across all the parallel paths.
So, total emf can be expressed as
$\mathrm{E}_{\mathrm{g}}=\frac{P \Phi \mathrm{~N}}{60} \quad \frac{Z}{A}$ VOLT
This equation is called emf equation of the dc generator.
We can also write $\mathrm{E}_{\mathrm{g}}=\frac{\text { QZN }}{60} \frac{\mathrm{P}}{\mathrm{A}}$ volt
Where, $A=P$ for lap winding
$A=2$ for wave winding
b) Calculate the total power and readings of two wattmeter connected to measure power in three phase balanced load if the apparent power is $15 \mathrm{KVA} \&$ load pf is 0.8 lag.

Given:
$\mathrm{S}=15 \mathrm{KVA}$
$\cos \varnothing=0.8 \mathrm{lag}$
To find :
P, W and W_{2}
Solution:

$$
\cos \emptyset=\frac{P}{S}
$$

$P=S \times \cos \emptyset$
$P=15 \times 10^{3} \times 0.8=12 \mathrm{KW}$
$\mathrm{S}=\sqrt{P^{2}+Q^{2}}$
$\mathrm{Q}=\sqrt{S^{2}-P^{2}}$
$\mathrm{Q}=19.21 \times 10^{3} \mathrm{KVA}$
$\mathrm{P}=\mathrm{W}_{1}+\mathrm{W}_{2} \ldots \ldots . . \mathrm{W}_{1}+\mathrm{W}_{2}=12 \times 10^{3}$
$\mathrm{Q}=\sqrt{3}\left(\mathrm{~W}_{1}-\mathrm{W}_{2}\right) \ldots . . \sqrt{3}\left(\mathrm{~W}_{1}-\mathrm{W}_{2}\right)=19.21 \times 10^{3}$
$W_{1}+W_{2}=12 \times 10^{3}$.
$W_{1}-W_{2}=11.09 \times 10^{3}$
Solving equation (1) and (2) we get,

$$
\begin{aligned}
& \mathrm{W}_{1}=11545 \mathrm{~W} \\
& \mathrm{~W}_{2}=455 \mathrm{~W} .
\end{aligned}
$$

c) In inductive coil containing resistance 20Ω and inductance of 0.2 H is connected in parallel with a capacitor of $150 \mu \mathrm{~F}$. Find resonant frequency of the circuit, dynamic impedance of the circuit and current in the circuit.

Given:
$\mathrm{R}=20 \Omega$
$\mathrm{L}=0.2 \mathrm{H}$
$\mathrm{C}=150 \mu \mathrm{~F}=150 \times 10^{-6} \mathrm{~F}$
To find :
f_{r}, Z and I
SOLUTION:
$f_{r}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R_{L}^{2}}{L^{2}}}$

From the above formula we get,

$$
\mathrm{f}_{\mathrm{r}}=24.3 \mathrm{~Hz}
$$

Now,
$\mathrm{Z}=\frac{L}{C R}$
$\mathrm{Z}=(0.2) / 150 \times 10^{-6} \times 20$
$\mathrm{Z}=66.67 \Omega$
$\mathrm{I}=\frac{V}{Z}$
$I=\frac{200}{66.67}$
$\mathrm{I}=2.99 \mathrm{~A}$
d) Find I current in 50Ω by nodal I analysis

To find:
$I_{5 \Omega}$ Using nodal analysis.

SOLUTION:

By applying KCL at node A
$l_{1}+I_{2}+I_{3}=2$
$\frac{V_{A}-24}{5}+\frac{V_{A}}{20}+\frac{V_{A}-36}{20}=2$
$V_{A}\left[\frac{1}{5}+\frac{1}{20}+\frac{1}{20}\right]=2+\frac{24}{5}+\frac{36}{20}$
$V_{A}=28.67$
$\mathrm{I}_{5 \Omega}=\frac{V_{A}-24}{5}$

$$
I_{5 \Omega}=0.934 \mathrm{~A}
$$

e) Three currents are meeting at a point. Find the resultant current $i 1=50 \operatorname{Sin}(w t) A, i 2=25 \operatorname{Cos}\left(\omega t-\frac{\pi}{6}\right) A$, $i 3=-10 \operatorname{Sin}\left(\omega t+\frac{\pi}{4}\right) A$.

SOLUTION:

To find resultant current I $I_{1}=\frac{50}{\sqrt{2}}<0$
$\mathrm{i}_{2}=25 \sin \left(\omega t-\frac{\pi}{6}+\frac{\pi}{2}\right)$ $\mathrm{i}_{2}=25 \sin (\omega t-60)$
$\mathrm{I}_{2}=\frac{25}{\sqrt{2}} \angle-6$
$\mathrm{i}_{3}=-10 \operatorname{Sin}\left(\omega \mathrm{t}+\frac{\pi}{4}\right)$
$\mathrm{i}_{3}=10 \operatorname{Sin}\left(\omega t+\frac{\pi}{4}+180^{\circ}\right)$
$\mathrm{i}_{3}=10 \operatorname{Sin}\left(\omega t+225^{\circ}\right)$
$\mathrm{I}_{2}=\frac{10}{\sqrt{2}} \angle 225^{\circ}$
$I=I_{1}+I_{2}+I_{3}$
$I=\frac{50}{\sqrt{2}} \angle 0+\frac{25}{\sqrt{2}} \angle-6+\frac{10}{\sqrt{2}} \angle 225^{\circ}$
$I=44.17 \angle-27$
$\mathrm{i}=62.42 \sin \left(\omega t-27^{\circ}\right)$

Q2.
a) Find current in 1Ω resistance by superposition theorem

Consider 4 V acting alone, replace 1 A and 3 A by $O C$

Applying KVL on mesh we get,
$I_{1}=\frac{4}{3} \mathrm{~A}(\downarrow)$
Consider 1 A acting alone, replace 4 V by SC and 3 A by OC

By current division rule,
$I^{\prime \prime}=\frac{1 \times 2}{1+2}$
$I^{\prime \prime}=\frac{2}{3} \mathrm{~A}(\downarrow)$
Consider 3A acting alone, replace 4V by SC 1A by OC

By current division rule,
$I^{\prime \prime \prime}=\frac{3 \times 2}{1+2}=\frac{6}{3}$
$I^{\prime \prime \prime}=2 \mathrm{~A}(\downarrow)$
$l_{1 \Omega}=I_{1}{ }^{\prime}+I^{\prime \prime}+I^{\prime \prime \prime}$
$\mathrm{I}_{1 \Omega}=\frac{4}{3}+\frac{2}{3}+2$
$\mathrm{I}_{1 \Omega}=4 \mathrm{~A}(\downarrow)$
b) Find maximum power in RL.

SOLUTON:

To find $R_{T H}$, Remove R_{L} and replace it by $A B$ terminal

Hence $R_{\text {th }}=49 \Omega$

To find V_{TH}, Remove R_{L}

By using mesh analysis

Apply KVL in mesh 1
$100-40\left(I_{1}-I_{2}\right)-60\left(I_{1}-I_{2}\right)=0$
$-100 \mathrm{I}_{1}+100 \mathrm{I}_{2}=-100$.
KVL in mesh 2
$-100\left(I_{2}-I_{1}\right)-100 I_{2}=0$
$1001_{1}-200 I_{2}=0$. (2).

Solving Equation 1 and 2 we get,
$\mathrm{I}_{1}=2 \mathrm{~A}$
$\mathrm{I}_{2}=1 \mathrm{~A}$
$\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{AB}}=-2-50 \mathrm{I}_{2}+60\left(I_{2}-\mathrm{I}_{1}\right)$
$\mathrm{V}_{\text {TH }}=-2-50+60$
$V_{\text {TH }}=-8 \mathrm{~V}$
$P_{\text {MAX }}=V_{\text {th }}{ }^{2} / 4 R_{\text {TH }}$
$P_{\text {MAX }}=8^{2} /(4 \times 49)$
$P_{\text {MAX }}=0.327 \mathrm{~W}$.

Q3.
a) Find the equivalent resistance between A and B in the network shown.

To find R_{AB}
SOLUTON:

Hence,

```
R AB}=3.83
```

b) A 100 resistance is connected in series with a choke coil. A voltage of $400 \mathrm{~V}, 50 \mathrm{~Hz}$ is applied across this combination. The voltage across resistance and coil is 200 V and 300 V respectively. Find resistance and reactance of a coil, power factor of a coil and complete circuit complete circuit, power absorbed by resistor, coil and complete circuit.
$100 \Omega \mathrm{r}$

Given:
$V_{R}=200 \mathrm{~V}$
$V_{\text {coll }}=300 \mathrm{~V}$
To find:
$\mathrm{R}_{\mathrm{r}}, \mathrm{X}_{\mathrm{L}}, \mathrm{PF}_{\text {coll, }} \mathrm{PF}_{\mathrm{T}}, \mathrm{P}_{\mathrm{R}}, \mathrm{P}_{\text {coll }}, \mathrm{P}$.

SOLUTION:
$V_{R}=200 \mathrm{~V}$
$\mathrm{I}=\frac{V_{R}}{R}$
$I=\frac{200}{100}$
$\mathrm{I}=2 \mathrm{~A}$

Now,
$\mathrm{Z}_{\text {COIL }}=\frac{\mathrm{V}_{\text {coil }}}{I}$
$Z_{\text {COIL }}=\frac{300}{2}$
$Z_{\text {coll }}=150 \Omega$
$\mathrm{Z}_{\mathrm{T}}=(\mathrm{R}+\mathrm{r})+\mathrm{j} \mathrm{X}_{\mathrm{L}}$
$\left(Z_{T}\right)^{2}=(R+r)^{2}+\left(X_{L}\right)^{2}$
$200^{2}=100^{2}+(2 \times 100 r)+r^{2}+X_{L}^{2}$
As we know,
$Z_{\text {COIL }}{ }^{2}=r^{2}+X_{L}{ }^{2}$
Hence,

$$
200^{2}=100^{2}+200 r+150^{2}
$$

$$
r=37.5 \Omega
$$

$$
r^{2}+X_{L}^{2}=150^{2}
$$

$$
X_{L}{ }^{2}=150^{2}-37.5^{2}
$$

$$
X_{L}=145.27 \Omega
$$

$$
\mathrm{X}_{\mathrm{L}}=2 \pi f L
$$

$$
X_{L}=145.24 \Omega
$$

$$
\mathrm{L}=\frac{145.24}{2 \pi \times 50}
$$

$$
\mathrm{L}=0.46 \mathrm{H}
$$

$$
\cos \emptyset_{\text {COIL }}=\frac{r}{z_{\text {COIL }}}
$$

$$
\cos \emptyset_{\text {COIL }}=\frac{37.5}{150}
$$

$$
\cos \emptyset_{\text {COIL }}=0.25 \mathrm{LAG}
$$

$$
\cos \varnothing=\frac{R+r}{z}
$$

$$
\cos \emptyset=\frac{100+37.5}{200}
$$

$$
\cos \emptyset=0.6875 \mathrm{lag}
$$

$P_{R}=I^{2} R$
$\mathrm{P}_{\mathrm{R}}=2^{2} \times 100$

$$
P_{R}=400 \mathrm{~W}
$$

$P_{\text {coll }}=I^{2} R$
$P_{\text {CoIL }}=2^{2} \times 100$
$P_{\text {coil }}=150 \mathrm{~W}$
$\mathrm{P}=\mathrm{VI} \cos \emptyset$
$P=400 \times 200 \times 0.6875$
$\mathrm{P}=550 \mathrm{~W}$

Q4.
a) A resistor and a capacitor are in series with a variable inductor. When the circuit is connected to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, the maximum current obtainable by varying the inductance is 0.314 A . The voltage across capacitor is then 800 V ,
find R, L and C.

To find R,L,C
$\mathrm{I}=0.314 \mathrm{~A}$
$V_{C}=800 \mathrm{~V}$

SOLUTION:
$\mathrm{Z}_{\mathrm{T}}=\frac{V}{I}$
$\mathrm{Z}_{\mathrm{T}}=\frac{220}{0.314}$
$Z_{T}=R=700.64 \Omega$
$V_{C}=I X_{C}$
$X_{C}=\frac{800}{0.314}$
$X_{C}=2547.77 \Omega$
$\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi f c}$
$C=\frac{1}{2 \pi \times 2547.77 \times 50}$
$C=1.25 \mu \mathrm{f}$
$Z_{T}=R=700.64 \Omega$.

Also, $X_{L}=X_{C}=2547.77 \Omega$
$X_{L}=2 \pi f l$
$X_{L}=2547.77 \Omega$
$\mathrm{L}=\frac{2547.77}{2 \pi \times 50}$
$\mathrm{L}=8.1 \mathrm{H}$

b) Explain working principle of three phase induction motor and mention its types.

A three phase induction motor has a stator and a rotor. The stator carries a 3 -phase winding called as stator winding while the rotor carries a short circuited winding called as rotor winding. The stator winding is fed from 3phase supply and the rotor winding derives its voltage and power from the stator winding through electromagnetic induction. Therefore, the working principle of a 3-phase induction motor is fundamentally based on electromagnetic induction.

Consider a portion of a three phase induction motor (see the figure). Therefore, the working of a three phase induction motor can be explained as follows

- When the stator winding is connected to a balanced three phase supply, a rotating magnetic field (RMF) is setup which rotates around the stator at synchronous speed $\left(\mathrm{N}_{s}\right)$. Where, $\mathrm{N}_{\mathrm{S}}=\frac{120 f}{P}$
- The RMF passes through air gap and cuts the rotor conductors, which are stationary at start. Due to relative motion between RMF and the stationary rotor, an EMF is induced in the rotor conductors. Since the rotor circuit is short-circuited, a current starts flowing in the rotor conductors.
- Now, the current carrying rotor conductors are in a magnetic field created by the stator. As a result of this, mechanical force acts on the rotor conductors. The sum of mechanical forces on all the rotor conductors produces a torque which tries to move the rotor in the same direction as the RMF.
- Hence, the induction motor starts to rotate. From, the above discussion, it can be seen that the three phase induction motor is self-starting motor.
- The three induction motor accelerates till the speed reached to a speed just below the synchronous speed.

Types of Three Phase Induction Motors

- Squirrel Cage Induction Motor
- Slip-ring or Wound Rotor Induction Motor

c) Explain working of permanent magnet stepper motor.

The working permanent magnet stepper motor can be explained in the following modes.

Mode 1- In this mode, the A phase of the stator poles are excited together with series winding to create two pairs of magnetic poles. It may be noted that, in this mode, the B phase is not excited at all. When the A phase is excited, it forms the North and South pole. At this moment, the rotor magnetic poles are attracted to the stator magnetic poles.

Mode 2 - In this mode, the B phase of the stator poles are excited together with series winding to create two pairs of magnetic poles. It may be noted that, in this mode, the A phase is not excited at all. When the B phase is excited, it forms the North and South pole. At this moment, the rotor magnetic poles are attracted to the stator magnetic poles. Which makes the rotor rotate in the clockwise direction from Mode 1.

Mode 3 - Again In this mode, the A phase of the stator poles are excited together with series winding to create two pairs of magnetic poles. It may be noted that, in this mode, the B phase is not excited at all. When the A phase is excited, it forms the North and South pole. At this moment, the rotor magnetic poles are attracted to the stator magnetic poles. It makes the rotor rotate in the clockwise direction from mode 2.

Mode 4- Again In this mode, the B phase of the stator poles are excited together with series winding to create two pairs of magnetic poles. It may be noted that, in this mode, the A phase is not excited at all. When the B phase is excited, it forms the North and South pole. At this moment, the rotor magnetic poles are attracted to the stator magnetic poles. Which makes the rotor rotate in the clockwise direction from Mode 3.

In this manner, the rotor makes one complete revolution from mode 1 to mode 4.

Q5.a) Derive relation between line \& phase voltage and line \& phase current in three phase STAR connected circuit. Also derive equation of active, reactive and apparent power.

MUQuestionPapers.com

SOLUTION:

Relationship between line voltage and phase voltage:
The figure shows a balanced three phase Y -connected system.
As load is balanced, all the three phase voltages $\mathrm{V}_{\text {RN }}, \mathrm{V}_{\mathrm{YN}}$ and $\mathrm{V}_{B N}$ are equal in magnitude and 120° apart.
By phase sequence, V_{YN} Lags behind that of $\mathrm{V}_{R N} B Y 120^{\circ}$ and $\mathrm{V}_{B N}$ lags behind that of $V_{\text {RN }}$ by 240°. The magnitude of each phase voltage id denoted by $V_{\text {PH. }}$. Thus,
$\mathrm{V}_{\mathrm{PH}}=\mathrm{V}_{\mathrm{RN}}=\mathrm{V}_{\mathrm{YN}}=\mathrm{V}_{\mathrm{BN}}$

The three line voltages are $\mathrm{V}_{\mathrm{RY}}, \mathrm{V}_{\mathrm{YB}}$ and V_{BR}.
From the circuit diagram it is clear that line voltage is not same as phase voltage.

However, for balanced system all three line voltages must be equal and the magnitude of each line voltage is denoted by V_{L}. Thus,
$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{RY}}=\mathrm{V}_{\mathrm{YB}}=\mathrm{V}_{\mathrm{BR}}$.

From the circuit diagram, the line voltage V_{Ry} can be written in terms of the phase voltages as,
$\bar{V}_{\mathrm{RY}}=\bar{V}_{R N}+\bar{V}_{\mathrm{NY}}$
Similarly, $\bar{V}_{\mathrm{YB}}=\bar{V}_{\mathrm{YN}}+\bar{V}_{\mathrm{NB}}$
$\bar{V}_{\mathrm{BR}}=\bar{V}_{\mathrm{BN}}+\bar{V}_{\mathrm{NR}}$
But $V_{R Y}$ is the line voltage and $V_{R N}$ and $V_{N Y}$ are the phase voltages. So, we have
$\mathrm{V}_{\mathrm{L}}{ }^{2}=\mathrm{V}_{\mathrm{PH}}{ }^{2}+\mathrm{V}_{\mathrm{PH}}{ }^{2}+2 \mathrm{~V}_{\mathrm{PH}} \times \mathrm{V}_{\mathrm{PH}} \mathrm{X} \cos 60^{\circ}=3 \mathrm{~V}_{\mathrm{Ph}}{ }^{2}$
$V_{L}=\sqrt{3} V_{P H}$.

Relationship between line current and phase current:

In a star connection, each line conductor is connected in series to a separate phase as shown in the above diagram. Therefore, current in the line conductor is same as that in the phase to which the line conductor is connected.

Line current , $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{PH}}$

Equation of Active, Reactive and apparent power.
$S=\sqrt{P^{2}+Q^{2}}$

$$
\cos \emptyset=\frac{P}{s}
$$

POWER TRIANGLE : In terms of circuit components

$$
\cos \varnothing=\frac{R}{Z}
$$

And
$V=I Z$
$\mathrm{P}=\mathrm{VI} \cos \emptyset$
$P=I^{2} R$
$\mathrm{Q}=\mathrm{VI} \sin \varnothing$
$Q=I^{2} X_{L}$
$\mathrm{S}=\mathrm{VI}$
$S=I^{2} Z$
b) A balanced three phase star connected load of 100 kW takes a leading current of 80 A when connected across 3 phase $1100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find the circuit constants of the load per phase, power factor of the load.

Given : (for star connected condition)
$P=100 K w=100 \times 10^{3} \mathrm{w}$
$\mathrm{I}_{\mathrm{PH}}=80 \mathrm{~A}$
$\mathrm{V}_{\mathrm{L}}=1100 \mathrm{~V}$
To find :
$Z_{\text {PH }}$ and power factor
Solution:
$\mathrm{V}_{\mathrm{L}}=\sqrt{3} \mathrm{~V}_{\mathrm{PH}}$
$I_{L}=I_{P H}$
$V_{\text {PH }}=\frac{V_{L}}{\sqrt{3}}$
$V_{\text {PH }}=\frac{1100}{\sqrt{3}}$

$$
V_{P H}=635.09 \mathrm{~V}
$$

$$
Z_{P H}=\frac{Z_{P H}}{I_{p h}}
$$

$$
Z_{P H}=\frac{635.09}{80}
$$

$$
Z_{P H}=7.94 \Omega
$$

$P=\sqrt{3} V_{L} I_{L} \cos \emptyset$

$$
\cos \varnothing=\frac{100}{\sqrt{3} \times 1100} \times 10^{3}
$$

$$
\cos \varnothing=0.656 \text { leading }
$$

Q6.
a) A pure resistor R , a choke coil and a pure capacitor of 15.91 microfarad are connected in series across a supply of V volts and carries a current of 0.25 A . The voltage across the choke coil is 40 V , the voltage across the capacitor is 50 V and the voltage across the resistor is 20 V . The voltage across the combination of R and the choke coil is 45 V .
i) supply voltage
ii) frequency
iii) the power in choke coil

Given:
C $=15.91 \mu f=15 \times 10^{-6} f$
$\mathrm{I}=0.25 \mathrm{~A}$
$\mathrm{V}_{\text {coll }}=40 \mathrm{~V}$

Solution:

$\mathrm{R}=\frac{V_{R}}{I}=\frac{20}{0.25}$
$R=80 \Omega$

Impedance across coil,
$Z_{\text {COIL }}=\frac{V_{\text {COIL }}}{I}=\frac{40}{0.25}$
$Z_{\text {CoIL }}=160 \Omega$
Hence,
$Z_{\text {coll }^{2}}{ }^{2} \mathrm{r}^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}$
$160^{2}=r^{2}+X_{L}{ }^{2}$
$V_{C}=I X_{C}$
$\mathrm{X}_{\mathrm{C}}=\frac{V_{C}}{I}=\frac{50}{0.25}$
$X_{C}=200 \Omega$
$\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi f C}$
$f=\frac{1}{2 \pi \times 200 \times 15.9 \times 10^{-6}}$

$$
\mathrm{f}=50.02 \mathrm{~Hz}
$$

Impedance across circuit,
$Z_{T}=(R+r)+j\left(X_{L}-X_{C}\right)$
$\mathrm{Z}_{\mathrm{T}}=\sqrt{(\mathrm{R}+\mathrm{r})^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$

Impedance across resistance and coil,
$Z_{\text {R }+ \text { coll }}=(R+r)+j X_{L}$
$\mathrm{Z}_{\mathrm{R}+\text { COIL }}=\frac{V_{R+\text { COIL }}}{I}=\frac{45}{0.25}$
$Z_{\text {R+COIL }}=180 \Omega$
$Z_{R+\operatorname{colL}^{2}}=(R+r)^{2}+X_{L}^{2}$
$180^{2}=R^{2}+2 R r+r^{2}+\mathrm{X}^{2}$

$$
180^{2}=80^{2}+160 r+r^{2}+X_{L}^{2}
$$

$180^{2}=80^{2}+160 r+160^{2}$.....from (1)
$r=2.5 \Omega$

Also,
$r^{2}+X_{L}{ }^{2}=160^{2}$
$X_{L}=160^{2}-2.5^{2}$
$X_{L}=159.98 \Omega$
$X_{L}=2 \pi f L$
$\mathrm{L}=\frac{X_{L}}{2 \pi f}$
$L=\frac{159.98}{2 \pi \times 50.02}$
$\mathrm{L}=0.51 \mathrm{H}$
$Z_{T}=\sqrt{(R+r)^{2}+\left(X_{L}-X_{C}\right)^{2}}$
$Z_{T}=\sqrt{(80+2.5)^{2}+(159.98-200)^{2}}$
$Z_{\mathrm{T}}=91.69 \Omega$
$V_{T}=I Z_{T}=0.25 \times 91.69$
$\mathrm{V}_{\mathrm{T}}=22.93 \mathrm{~V}$

$$
P_{\text {coll }}=I^{2} R=0.25^{2} 2.5
$$

$$
P_{\text {COIL }}=0.156 \mathrm{~W}
$$

b) An impedance $\mathbf{Z 1}$ is connected in series with two parallel impedances $\mathbf{Z 2}$ and $\mathrm{Z3}$. $\mathrm{Z1}$ consists of a resistance of 6 ohm in series with an inductor of 0.01 H . $\mathbf{Z 2}$ consists of a resistance of 60 hm in series with an inductor of $0.02 \mathrm{H} Z 3$ consist of resistance of 2 ohm in series with a capacitor of 200 microfarad. A voltage of 100 V at 50 Hz frequency is applied across complete circuit.

Find,

- impedance of the circuit.
- current drawn by the circuit.
- power absorbed by all the three impedances and by complete circuit.

100 V 50 Hz
Given:

Impedance $1\left(Z_{1}\right)$
$\mathrm{R}_{1}=6 \Omega$
$\mathrm{L}_{1}=0.01 \mathrm{H}$

Impedance $2\left(Z_{2}\right)$
$\mathrm{R}_{2}=4 \Omega$
$\mathrm{L}_{2}=0.02 \mathrm{H}$

Impedance $3\left(Z_{3}\right)$
$\mathrm{R}_{3}=2 \Omega$
$\mathrm{C}=20 \times 10^{-6} \mathrm{f}$
$\mathrm{V}_{\mathrm{T}}=100 \mathrm{~V}$
$\mathrm{f}=50 \mathrm{~Hz}$

Solution:

For impedance 1,
$\bar{Z}_{1}=R_{1}+j X_{L 1}$
$\mathrm{X}_{\mathrm{L} 1}=2 \pi f L$
$X_{L 1}=2 \pi \times 50 \times 0.01$
$X_{L 1}=3.14 \Omega$.
$\bar{Z}_{1}=6+\mathrm{j} 3.14$
$\bar{Z}_{1}=6.77 \angle 27.62$

For impedance 2,
$\bar{Z}_{2}=\mathrm{R}_{2}+\mathrm{j} \mathrm{X}_{\mathrm{L} 2}$
$\mathrm{X}_{\mathrm{L} 2}=2 \pi f L$
$\mathrm{X}_{\mathrm{L} 2}=2 \pi \times 50 \times 0.02$
$\mathrm{X}_{\mathrm{L} 2}=6.28 \Omega$
$\bar{Z}_{2}=4+\mathrm{j} 6.28$
$\bar{Z}_{2}=7.45 \angle 57.51$

For impedance 3,
$\bar{Z}_{3}=R_{3}-j X_{C}$
$X_{C}=\frac{1}{2 \pi f c}$
$X_{C}=\frac{1}{2 \pi \times 50 \times 200 \times 10^{-6}}$
$X_{C}=15.92 \Omega$
$\bar{Z}_{3}=2-j 15.92$
$\bar{Z}_{3}=16.05 \angle-82.84$

Total impedance,
$\mathrm{Z}_{\mathrm{T}}=\bar{Z}_{1}+\left[\frac{\bar{Z}_{2} \bar{Z}_{3}}{\bar{Z}_{2}+\bar{Z}_{3}}\right]$
We get,
$\bar{Z}_{T}=17.28 \angle 30.75$
$\mathrm{Z}_{\mathrm{T}}=17.28 \Omega$

Now, current in every branch
$\mathrm{I}=\frac{V_{T}}{Z_{T}}=\frac{100}{17.25}$
$\mathrm{I}=5.79 \mathrm{~A}$
$I_{1}=\frac{100}{6.77}$
$\mathrm{I}_{1}=14.77$
$I_{2}=\frac{100}{7.45}$
$I_{2}=13.42$

$$
\begin{aligned}
& I_{3}=\frac{100}{16.05} \\
& I_{3}=6.23 \mathrm{~A}
\end{aligned}
$$

Power in every branch,
$P_{1}=I_{1}^{2} R$
$P_{1}=14.77^{2} 6$
$P_{1}=1308.92 \mathrm{w}$
$P_{2}=13.42^{2} 4$
$P_{2}=720.39 \mathrm{w}$
$P_{3}=6.23^{2} 2$
$\mathrm{P}_{3}=77.63 \mathrm{w}$
$\mathrm{P}_{\mathrm{T}}=\mathrm{VI} \cos \emptyset$
$\mathrm{P}_{\mathrm{T}}=\mathrm{VI} \cos (30.75)$

$$
\mathrm{P}_{\mathrm{T}}=467.6 \mathrm{w}
$$

