
Mumbai University Engineering **Mechanics** May 2019 **Question** Paper Solution

Q1. Attempt Any Four:

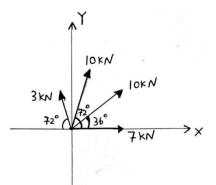
(a) Find the resultant of forces as shown in fig.

(05 marks)

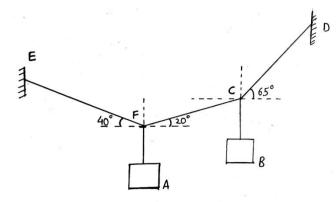
Solution:

$$\sum F_{x} = \left[(7) + (10\cos(36^{\circ})) + (10\cos(72^{\circ})) + (-3\cos(72^{\circ})) \right] \text{ kN}$$

$$\therefore \sum F_x = 17.25 \text{ kN}(\rightarrow)$$


 $\sum F_{y} = \left[(10\sin(36^{\circ})) + (10\sin(72^{\circ})) + (3\sin(72^{\circ})) \right] kN$

 $\therefore \sum \mathbf{F}_{y} = 18.24 \text{ kN}(\uparrow)$


Resultant=
$$\sqrt{(\sum F_x)^2 + (\sum F_y)^2} kN$$

= $\sqrt{(17.25)^2 + (18.24)^2} kN$
=25.10 kN (\Box)

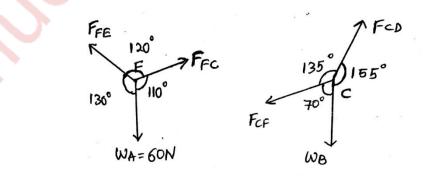
 \therefore Resultant=25.10 kN (\Box)

$$\theta = \tan^{-1} \left[\frac{\sum F_y}{\sum F_x} \right] = \tan^{-1} \left[\frac{18.24}{17.25} \right] = 46.6^{\circ}$$
$$\therefore \theta = 46.6^{\circ}$$

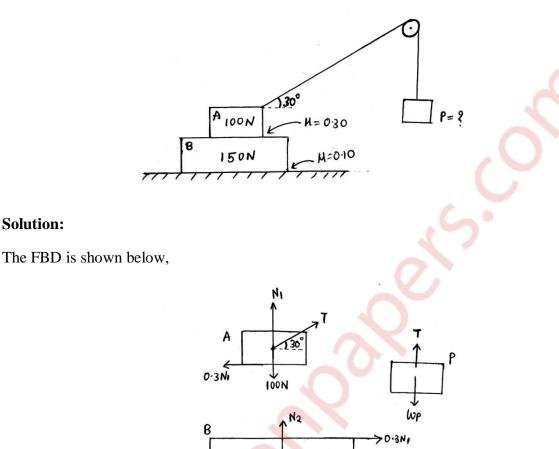
(b) If the cords suspended the two buckets in equilibrium position shown in Fig. Determine weight of bucket B if bucket A has a weight of 60 N. (05 marks)

Solution:

 $W_A = 60 \text{ N} \dots \{\text{Given}\}$


Applying Lami's Theorem at point F,

$$\therefore \frac{W_A}{\sin(120^\circ)} = \frac{F_{FC}}{\sin(130^\circ)} = \frac{F_{FE}}{\sin(110^\circ)}$$
$$\therefore F_{FC} = \frac{W_A}{\sin(120^\circ)} (\sin(130^\circ)) N = \frac{60}{\sin(120^\circ)} (\sin(130^\circ)) N$$
$$\therefore F_{FC} = 53.07 N$$


Applying Lami's Theorem at point C,

$$\therefore \frac{W_{B}}{\sin(135^{\circ})} = \frac{F_{CD}}{\sin(70^{\circ})} = \frac{F_{CF}}{\sin(155^{\circ})}$$
$$\therefore W_{B} = \frac{F_{CF}}{\sin(155^{\circ})} (\sin(135^{\circ})) N = \frac{53.07}{\sin(155^{\circ})} (\sin(135^{\circ})) N$$
$$\therefore W_{B} = 88.79 N$$

 \therefore The weight of the bucket B = 88.79 N

(c) Two blocks A=100 N and B=150 N are resting on the ground as shown in fig. Find the minimum weight P in the pan so that body A starts. Assume pulley to be mass less and frictionless. (05 marks)

Let the tension in the string be 'T' N

Solution:

Let the normal force between the two blocks A and B be N_1 N

Let the normal force between block B and ground be N_2 N

0.1 N2

For block to just start to move, the friction force acting on block A will be backwards

N 150N

And on block B the same force will be forwards.

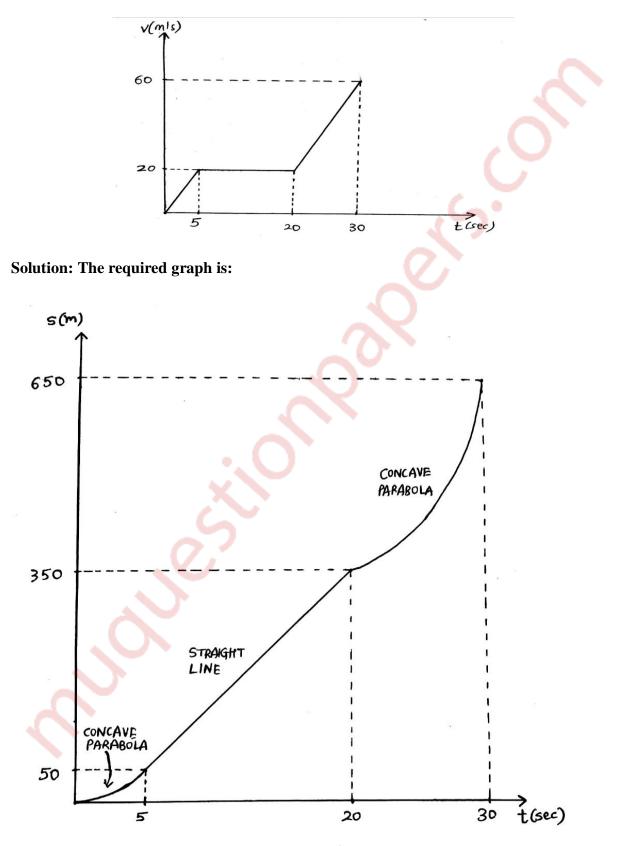
The friction force between block B and ground will be backwards on block B.

: Applying equilibrium conditions on Block B, $\sum F_x = 0$ $(0.3N_1) - (0.1N_2) = 0$...(1)

 $\sum F_{y} = 0$:. N₂ -150 - N₁ = 0 :. -N₁+N₂=150 ...(2)

From (1) and (2)

 $N_1 = 75 \text{ N} \text{ and } N_2 = 225 \text{ N}$


 $\therefore \text{ Applying equilibrium conditions on Block A,} \\ \sum F_x = 0 \\ \therefore (\text{Tcos}(30^\circ)) - (0.3\text{N}_1) = 0 \\ \therefore (\text{Tcos}(30^\circ)) - (0.3(75)) = 0$

 $\therefore T= 25.98 \text{ N}$ On block P, $W_{p} = T$

 \therefore The minimum weight P in the pan so that block A just starts = 25.98 N

(d) The motion of jet plane while travelling along a runway is defined by the v-t graph as shown in Fig. Construct the s-t graph for the motion. The plane starts from rest.

(05 marks)

6

Explanation :

For S-T graph

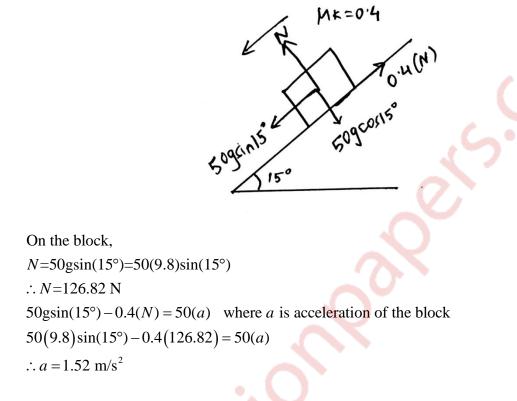
 $\int ds = \int v dt =$ Area under the graph under time interval

Since the object is at rest initially, $S_0 = 0$ m

For time 0 to 5 seconds

$$\int_{0}^{S_{5}} ds = \int_{0}^{5} v dt = \text{Area under graph from 0 to 5 seconds} = \frac{1}{2} (5) (20) \text{ m}$$

$$\therefore S_{5} - 0 = 50 \text{ m} \quad \therefore \boxed{S_{5} = 50 \text{ m}}$$


$$\int_{0}^{5} ds = \int_{0}^{0} v dt = \text{Area under graph from 0 to 5 seconds} = \frac{1}{2} (5) (20) \text{ m}$$

$$\therefore \text{ S}_{5} - 0 = 50 \text{ m} \quad \therefore \text{ S}_{5} = 50 \text{ m}$$

$$\int_{S_{5}}^{S_{20}} ds = \int_{5}^{20} v dt = \text{Area under graph from 5 to 20 seconds} = (20 - 5) (20) \text{ m}$$

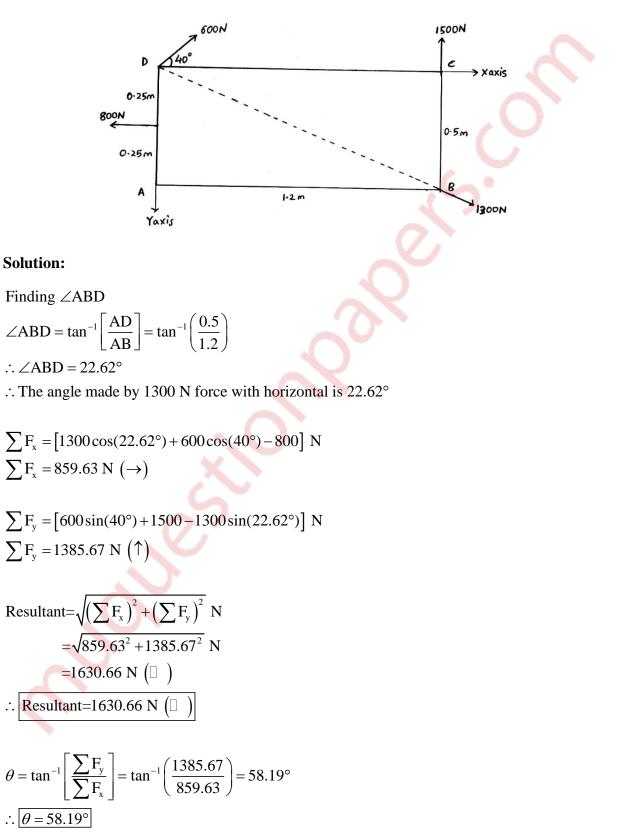
$$\therefore \text{ S}_{20} - \text{ S}_{5} = 300 \text{ m} \quad \therefore \text{ S}_{20} = 350 \text{ m}$$

$$\int_{S_{20}}^{S_{30}} ds = \int_{20}^{30} v.dt = \text{Area under graph from 20 to 30 seconds} = \left[(30 - 20)(20) + \frac{1}{2}(30 - 20)(60 - 20) \right] \text{ m}$$

$$\therefore S_{30} - S_{20} = 400 \text{ m} \quad \therefore \boxed{S_{30} = 750 \text{ m}}$$

(e) A 50 kg block is kept on the top of a 15° slopping surface is pushed down the plane with an initial velocity of 20 m/s. If $\mu_k = 0.4$, determine the acceleration of the block.

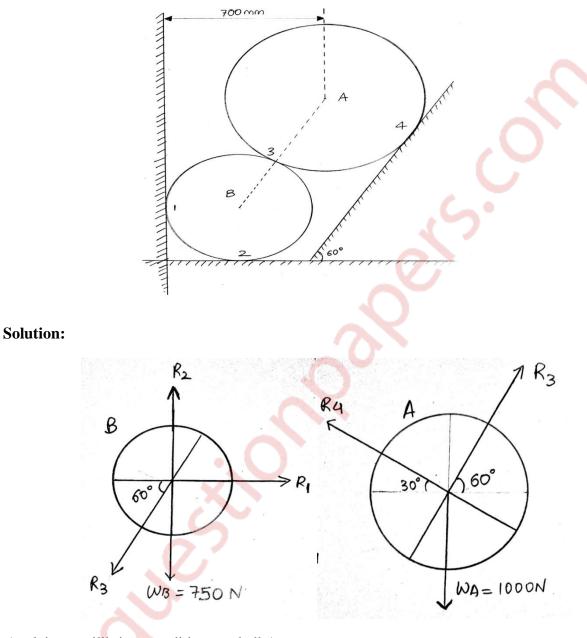
(05 marks)


Solution: The FBD is,

\therefore The acceleration of the block = 1.52 m/s²

Q2. Attempt:

(a) Four forces acting on a rectangle in the same plane as shown in fig. below. Find magnitude and direction of resultant force. Also find intersection of line of action of resultant with X and Y axes, assuming D as origin. (06 marks)



 $\sum M_0 = (1500)(1.2) + (1300\cos(22.62^\circ)(0.5) - (1300\sin(22.62^\circ)(1.2)) - (800)(0.25)$ $\therefore \sum M_0 = 1600 \text{ N-m}$

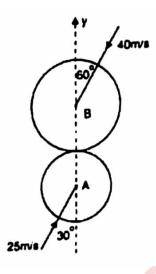
$$X = \frac{\sum M_0}{\sum F_y} = \frac{1600}{1385.67} = 1.15 \text{ m}$$
$$Y = \frac{\sum M_0}{\sum F_x} = \frac{1600}{859.63} = 1.86 \text{ m}$$

 \therefore X=1.15 m and Y=1.86 m

(b) Two spheres A and B of weight 1000 N and 750 N respectively are kept as shown in fig. Determine the reactions at all contact points 1, 2, 3 and 4. Radius of A=400 mm and B=300 mm. (08 marks)

Applying equilibrium conditions on ball A $\sum F_x = 0$ $\therefore R_3 \cos(60^\circ) - R_4 \cos(30^\circ) = 0 \quad ...(1)$

 $\sum \mathbf{F}_{y} = 0$ $\therefore \mathbf{R}_{3} \sin(60^{\circ}) + \mathbf{R}_{4} \sin(30^{\circ}) - 1000 = 0$ $\therefore \mathbf{R}_{3} \sin(60^{\circ}) + \mathbf{R}_{4} \sin(30^{\circ}) = 1000 \quad ...(2)$ From (1) and (2) $\boxed{\mathbf{R}_{3} = 866.03 \text{ N and } \mathbf{R}_{4} = 500 \text{ N}}$ Applying equilibrium conditions on ball B $\sum F_x = 0$ $\therefore R_1 - R_3 \cos(60^\circ) = 0$ $\therefore R_1 = R_3 \cos(60^\circ) = (866.03) \cos(60^\circ)$ $\therefore R_1 = 433.02 \text{ N}$


$$\sum F_{y} = 0$$

$$\therefore R_{2} - R_{3} \sin(60^{\circ}) - 750 = 0$$

$$R_{2} - (866.03) \sin(60^{\circ}) - 750 = 0$$

$$\therefore \boxed{R_{2} = 1500 \text{ N}}$$

(c) Two smooth balls A (mass 3 kg) and B (mass 4 kg) are moving with velocities 25 m/s and 40 m/s respectively. Before impact, the directions of velocity of two balls are 30 $^{\circ}$ and 60 $^{\circ}$ with the line joining the centres as shown in Fig. If e=0.8, find magnitude and direction of velocities of the balls after impact. (06 marks)

Solution:

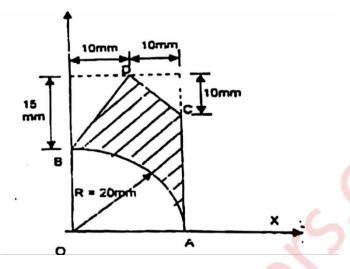
Let u_A and u_B be the initial velocities of balls A and B respectively, Let v_A and v_B be the final velocities of balls A and B respectively, $\therefore u_A = 25 \sin(30^\circ)i + 25 \cos(30^\circ)j$ $\therefore u_B = -40 \sin(60^\circ)i - 40 \cos(30^\circ)j$ Let v_{Ax} and v_{Ay} be the x and y components of velocity of ball A resp,

Let v_{Bx} and v_{By} be the x and y components of velocity of ball B resp, Applying Law of conservation of linear momentum along y direction, $m_A u_{Ay} + m_B u_{By} = m_A v_{Ay} + m_B v_{By}$ $\therefore 3(25\cos(30^\circ)) + 4(-40\cos(60^\circ)) = 3v_{Ay} + 4v_{By}$...(1)

 $e = \frac{v_{By} - v_{Ay}}{u_{Ay} - u_{By}} = 0.8 = \frac{v_{By} - v_{Ay}}{25\cos(30^\circ) - (-40\cos(60^\circ))}$ $0.8 [25\cos(30^\circ) - (-40\cos(60^\circ))] = -v_{Ay} + v_{By} \dots (2)$

From (1) and (2)

 $v_{Ay} = -21.19 \text{ m/s } v_{By} = 12.13 \text{ m/s}$


The velocities along the perpendicular to line of action remain unchanged, $\therefore v_{Ax} = 25 \sin(30^\circ) = 12.5 \text{ m/s}$ and $v_{Bx} = -40 \sin(60^\circ) = -34.64 \text{ m/s}$

$\therefore \begin{bmatrix} v_{A} = [12.5i - 21.19j] \text{ m/s} \\ v_{B} = [-34.64i + 12.13j] \text{ m/s} \end{bmatrix}$
14

Q3. Attempt:

(a) Find the centroid of shaded area as shown in fig.

(08 marks)

Solution:

Shape	Area(in mm ²)	Х-	Y-	AX	AY
		Coordinate	Coordinate		
Rectangle	=(35)(20)	=10	=17.5	=7000	=12250
	=700		0		
Quarter	$\pi(20)^{2}$	4(20)	4(20)	=	=
Circle	$=-\frac{1}{4}$		$= \frac{3\pi}{3\pi}$	-2667.22	-2667.22
	=-314.16	=8.49	=8.49		
Triangle		10	15	=-250	=-2250
(ht=15 mm,	$=-\frac{1}{2}(10)(15)$	$=\frac{10}{2}$	$=35-\frac{10}{3}$		
bs=10 mm			-		
	=-75	=3.33	=30		
Triangle	$1_{(10)(10)}$	10	25 10	=-833.5	=
(ht=10 mm,	$=-\frac{-(10)(10)}{2}$	$=20-\frac{1}{3}$	$=33 - \frac{1}{3}$		-1583.5
bs=10 mm)	=-50	=16.67	=31.67		
	Rectangle Quarter Circle Triangle (ht=15 mm, bs=10 mm) Triangle (ht=10 mm,	Rectangle =(35)(20) =700 =700 Quarter = $-\frac{\pi (20)^2}{4}$ Einer = $-\frac{314.16}{2}$ Triangle = $-\frac{1}{2}(10)(15)$ bs=10 mm) = -75 Triangle = $-\frac{1}{2}(10)(10)$	Image: Constant of the sector of the sect	CoordinateCoordinateCoordinateRectangle=(35)(20) =700=10=17.5Quarter Circle $=-\frac{\pi(20)^2}{4}$ $=-314.16$ $=\frac{4(20)}{3\pi}$ $=8.49$ $=\frac{4(20)}{3\pi}$ $=8.49$ Triangle (ht=15 mm, bs=10 mm) $=-\frac{1}{2}(10)(15)$ $=-75$ $=\frac{10}{3}$ $=3.33$ $=30$ Triangle (ht=10 mm, (ht=10 mm, $=-\frac{1}{2}(10)(10)$ $=20-\frac{10}{3}$ $=35-\frac{10}{3}$	CoordinateCoordinateRectangle=(35)(20) =700=10=17.5=7000Quarter Circle $=-\frac{\pi(20)^2}{4}$ $=-314.16$ $=\frac{4(20)}{3\pi}$ $=8.49$ $=\frac{4(20)}{3\pi}$ $=8.49$ $=\frac{-2667.22}{-2667.22}$ Triangle (ht=15 mm, bs=10 mm) $=-\frac{1}{2}(10)(15)$ $=-75$ $=\frac{10}{3}$ $=3.33$ $=30$ $=-250$ Triangle (ht=10 mm, (ht=10 mm, $=-\frac{1}{2}(10)(10)$ $=20-\frac{10}{3}$ $=35-\frac{10}{3}$ $=-833.5$

 $\sum A = 700 - 314.16 - 75 - 50 \text{ mm}^2$ $\therefore \sum A = 260.84 \text{ mm}^2$

 $\sum AX = 7000 - 2667.22 - 250 - 833.5 \text{ mm}^2$ $\therefore \sum AX = 3249.28 \text{ mm}^2$ $\sum AY = 12250 - 2667.22 - 2250 - 1583.5 \text{ mm}^2$ $\therefore \sum AY = 5749.28 \text{ mm}^2$

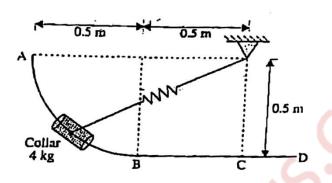
$$X = \frac{\sum AX}{\sum A} = \frac{3249.28}{260.84} = 12.46 \text{ mm}$$

$$Y = \frac{\sum AY}{\sum A} = \frac{5749.28}{260.84} = 22.04 \text{ mm}$$

Centroid is,

∴ X=12.46 mm and Y=22.04 mm

(b) Three forces F_1, F_2 and F_3 act at origin O. $F_1 = 70$ N acting along OA, where A (2, 1, 3). $F_2 = 80$ N acting along OB, where B(-1, 2, 0). $F_3 = 100$ N acting along OC, where C(4, -1, 5). Find the resultant of these concurrent forces. (06 marks)


Solution:

 $\overline{F_1} = 70[2i + j + 3k] N$ $\overline{F_2} = 80[-i + 2j] N$ $\overline{F_3} = 100[4i - j + 5k] N$

 $\overline{\mathbf{F}_{\text{net}}} = \overline{\mathbf{F}_1} + \overline{\mathbf{F}_2} + \overline{\mathbf{F}_3} \text{ N}$ $\therefore \overline{\mathbf{F}_{\text{net}}} = \left[70\left[2i + j + 3k\right] + 80\left[-i + 2j\right] + 100\left[4i - j + 5k\right]\right] \text{ N}$

$$\therefore \overline{\mathrm{F}_{\mathrm{net}}} = \left[460i + 130j + 710k\right] \mathrm{N}$$

(c) A 4 kg collar is attached to a spring, slides on a smooth bent rod ABCD. The spring has constant k=500 N/m and is undeformed when the collar is at 'C'. If the collar is released from rest at A. Determine the velocity of collar, when it passes through 'B' and 'C'. Also find the distance moved by collar beyond 'C' before it comes to rest again. Refer fig. (06 marks)

Solution:

 $l(OB) = \sqrt{0.5^2 + 0.5^2} = 0.5\sqrt{2} = 0.707 \text{ m}$

Natural Length (l_0) =0.5 m

 $x_{\rm A} = OA - l_0 = 1 - 0.5 = 0.5 \text{ m}$ $x_{\rm B} = OB - l_0 = 0.707 - 0.5 = 0.207 \text{ m}$

Applying work energy theorem from A to B

$$W_g + W_{sp} = \Delta K$$

$$mgh + \frac{1}{2}k(x_A^2 - x_B^2) = \frac{1}{2}m(v_B^2 - v_A^2)$$

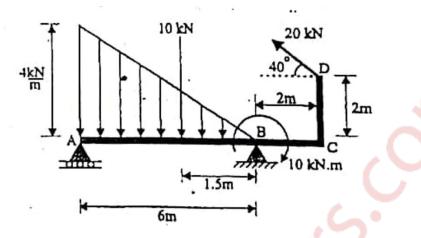
4(9.8)(0.5) + $\frac{1}{2}$ (500)(0.5² - 0.207²) = $\frac{1}{2}$ (4)(v_B^2 - 0²)
∴ $v_B = 5.97$ m/s

Applying work energy theorem from B to C, $W_a + W_m = \Delta K$

$$mgh + \frac{1}{2}k(x_B^2 - x_C^2) = \frac{1}{2}m(v_C^2 - v_B^2)$$

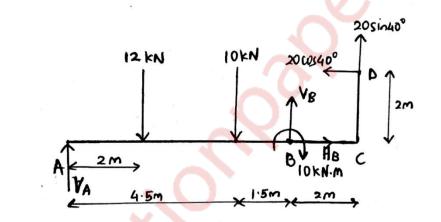
$$0 + \frac{1}{2}(500)(0.207^2 - 0^2) = \frac{1}{2}(4)(v_C^2 - 5.97^2)$$

$$\therefore v_C = 6.40 \text{ m/s}$$


Applying work energy theorem from C to D,

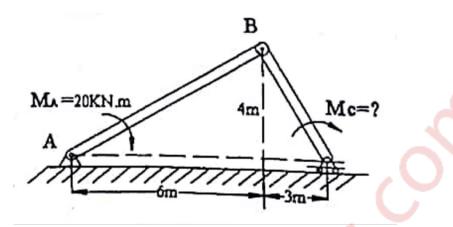
$$W_{\pi} + W_{\nu} = \Delta K$$

 $mgh + \frac{1}{2}k(x_c^2 - x_p^2) = \frac{1}{2}m(v_p^2 - v_c^2)$
 $0 + \frac{1}{2}(500)(0^2 - x_p^2) = \frac{1}{2}(4)(0^2 - 6.4^2)$
 $\therefore x_p = 0.572 \text{ m}$
 $l(OD) = l_p + x_p = 0.5 + 0.572 = 1.07 \text{ m}$
 $\therefore \text{ CD} = -\sqrt{OD^2 - OC^2} = \sqrt{1.07^2 - 0.5^2} = 0.946 \text{ m}$
 $\therefore \text{ [CD} = 0.946 \text{ m]}$


Q4. Attempt:

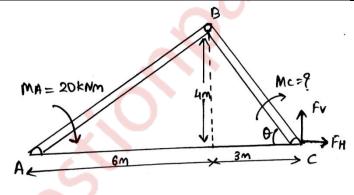
(a) Find the support reactions of beam loaded as shown in fig.

(08 marks)



Solution: The FBD is,

 $\sum M_{\rm B} = 0$ $\therefore -V_{\rm A}(6) + 12(4) + 10(1.5) + 20\cos(40^{\circ})(2) + 20\sin(40^{\circ})(2) = 0$ $\therefore \left[V_{\rm A} = 19.89 \text{ kN}(\uparrow)\right]$


 $\sum F_{x} = 0$ $\therefore H_{B} - 20\cos(40^{\circ}) = 0$ $\therefore H_{B} = 15.32 \text{ kN } (\rightarrow)$ $\sum F_{Y} = 0$ $\therefore V_{A} - 12 - 10 + V_{B} + 20\sin(40^{\circ}) = 0$ $19.89 - 12 - 10 + V_{B} + 20\sin(40^{\circ}) = 0$ $\therefore V_{B} = -10.75 \text{ kN} = 10.75 \text{ kN} (\downarrow)$ (b) Determine the moment to be applied at C for equilibrium of pin jointed mechanism. Use virtual work method. Refer Fig. (06 marks)

Solution:

From line BD:

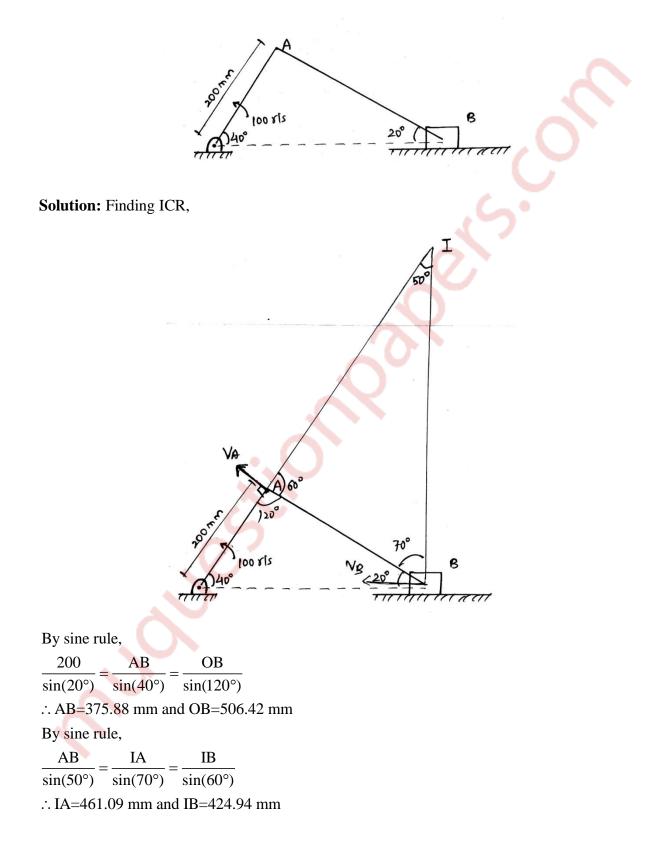
Active Forces	Coordinates 🦳	Virtual Displacement
F _H	3	$5\cos\theta$
F _v	0	0

For maintaining equilibrium,

By Principal of virtual work,

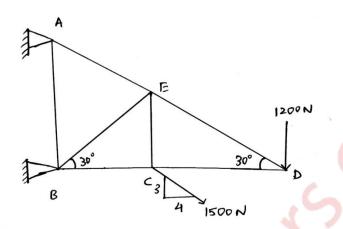
$$\sum V.W = 0$$

$$\therefore F_V(0) + F_H(5\cos\theta) - 20 = 0$$

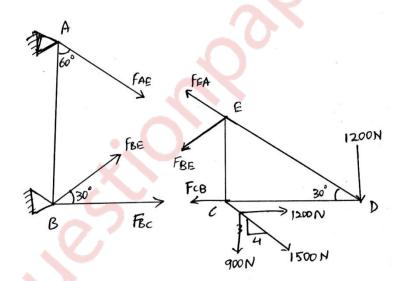

$$\therefore F_H = \frac{20}{5\cos\theta} = 4\sec\theta = \frac{20}{3} \text{ kN}$$

Hence the moment to be applied at point C is

 $M = \frac{20}{3}(3) = 20 \text{ kNm}$


(c) A slider crank mechanism is shown in Fig. The crank OA rotates anticlockwise at 100 rad/s. Find the angular velocity of rod AB and the velocity of the slider at B.

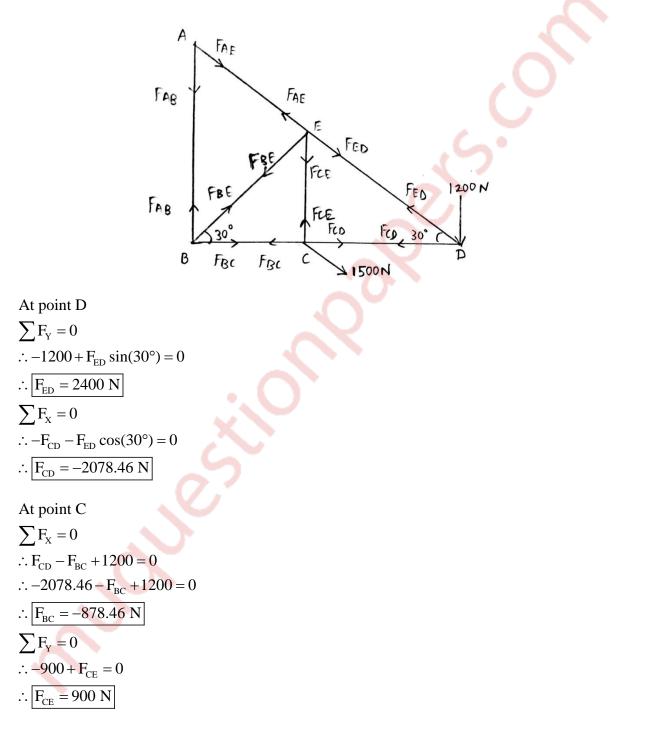
(06 marks)


Q5. Attempt:

(a) Find the forces in the members BC, BE and AE by method of sections and remaining members by method of joints. (08 marks)

Solution:

By method of section, cutting the given truss along AE, BE and BC



Consider the right part,

 $\sum F_{X} = 0$ $\therefore -F_{EA} \cos(30^{\circ}) - F_{BC} - F_{BE} \sin(60^{\circ}) + 1200 = 0 \quad \dots (1)$ $\sum F_{Y} = 0$ $\therefore F_{EA} \sin(30^{\circ}) - F_{BE} \cos(60^{\circ}) - 1200 - 900 = 0 \quad \dots (2)$ Let the length of hypotenuse be l $\sum M_{E}^{F} = 0$ $-F_{BC} (l \sin(30^{\circ})) + 1200(l \sin(30^{\circ})) - 1200(l \cos(30^{\circ})) = 0$ $\therefore \overline{F_{BC}} = -878.46 \text{ N}$

:. Put
$$F_{BC}$$
 in (1)
 $-F_{EA} \cos(30^\circ) - (-878.46) - F_{BE} \sin(60^\circ) + 1200 = 0$
 $\overline{F_{EA} = 3300 \text{ N}}$
 $\overline{F_{BE} = -900 \text{ N}}$

By method of joints,

At point E

$$\sum F_{X} = 0$$

$$\therefore -F_{AE} \cos(30^{\circ}) - F_{BE} \sin(60^{\circ}) + F_{ED} \cos(30^{\circ}) = 0$$

$$\therefore -F_{AE} \cos(30^{\circ}) - F_{BE} \sin(60^{\circ}) + 2400 \cos(30^{\circ}) = 0$$

$$\sum F_{Y} = 0$$

$$\therefore F_{AE} \sin(30^{\circ}) - F_{BE} \cos(60^{\circ}) - F_{CE} - F_{ED} \sin(30^{\circ}) = 0$$

$$\therefore F_{AE} \sin(30^{\circ}) - F_{BE} \cos(60^{\circ}) - 900 - 2400 \sin(30^{\circ}) = 0$$

$$F_{AE} = 3300 \text{ N}$$

$$F_{BE} = 900 \text{ N}$$

At point A $\sum F_{Y} = 0$ $\therefore -F_{AB} - F_{AE} \cos(60^{\circ}) = 0$ $\therefore F_{AB} = -3300 \cos(60^{\circ})$ $\therefore F_{AB} = -1650 \text{ N}$

Member	Force Magnitude (in N)	Nature of Force
AB	1650	Compressive
BE	900	Tensile
BC	878.46	Compressive
AE	3300	Tensile
CE	900	Tensile
ED	2400	Tensile
CD	2078.46	Compressive

(b) A particle moves in x-y plane and it's is given by $r = (3t)i + (4t - 3t^2)j$, where r is the position vector of particle in metres at time t sec. Find the radius of curvature of the path and normal and tangential components of acceleration when it crosses X-axis region. (06 marks)

Solution:

$$\overline{r} = \left[(3t)i + (4t - 3t^2)j \right] \mathrm{m}$$

When it crosses the x axis, the y coordinate is 0

$$\therefore (4t - 3t^2) = 0$$

$$\therefore t = 0s \text{ or } t = \frac{4}{3}s$$

$$\overline{v} = \frac{d\overline{r}}{dt} = \frac{d}{dt} \Big[(3t)i + (4t - 3t^2)j \Big]$$

$$\therefore \overline{v} = \Big[3i + (4 - 6t)j \Big] \text{ m/s}$$

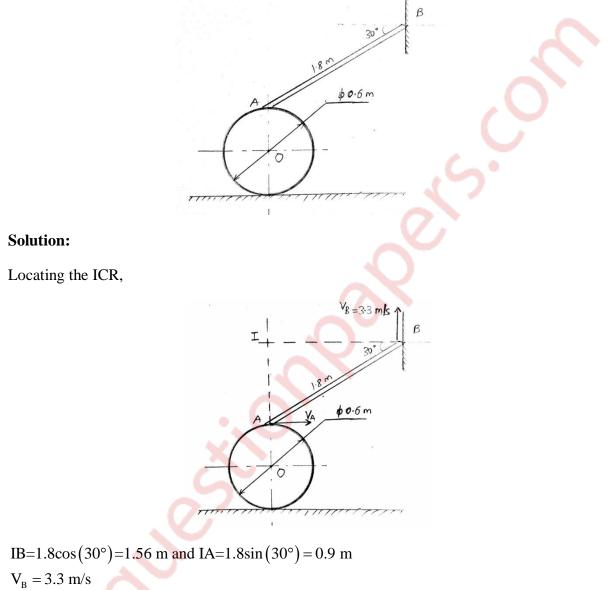
$$\therefore \text{ At } t = \frac{4}{3}s,$$

$$\overline{v} = \Big[3i - 4j \Big] \text{ m/s} = 5 \angle -53.13^\circ \text{ m/s}$$

$$\overline{a} = \frac{d\overline{v}}{dt} = \frac{d}{dt} [3i + (4 - 6t)j] \text{ m/s}^2$$

$$\therefore \overline{a} = -6j \text{ m/s}^2$$

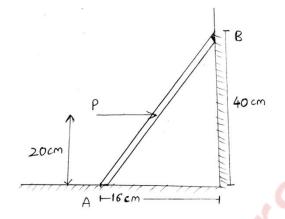
Radius of curvature(ρ)= $\frac{v^3}{|v_x a_y - v_y a_x|}$


$$\therefore \rho = \frac{5^3}{|(3)(-6) - (-4)(0)|} = \frac{125}{|-18|} = 6.94 \text{ m}$$

$$a_N = \frac{v^2}{\rho} = \frac{5^2}{6.94} = \frac{25}{6.94} = 3.6 \text{ m/s}^2$$
$$a_T = \sqrt{a^2 - a_N^2} = \sqrt{6^2 - 3.6^2} = 4.8 \text{ m/s}^2$$

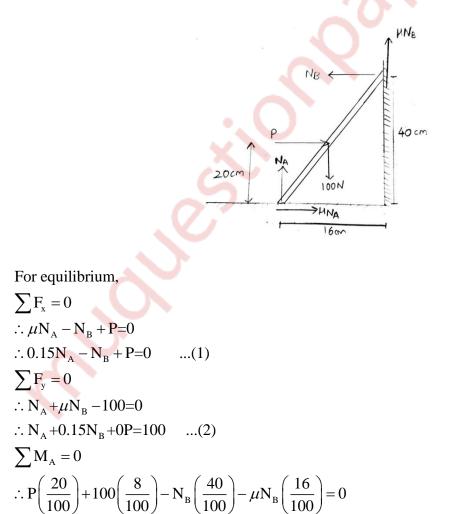
Radius of curvature=6.94 m and ∴ Normal component of acceleration=3.6 m/s² and Tangential component of acceleration=4.8 m/s²

m


(c) C is a uniform cylinder to which a rod AB is pinned at A and the other end of the rod is moving along a vertical wall as shown in fig. If the end B of the rod is moving upwards along the wall with a speed of 3.3 m/s find the angular velocity of wheel and rod assuming that cylinder is rolling without slipping. (06 marks)

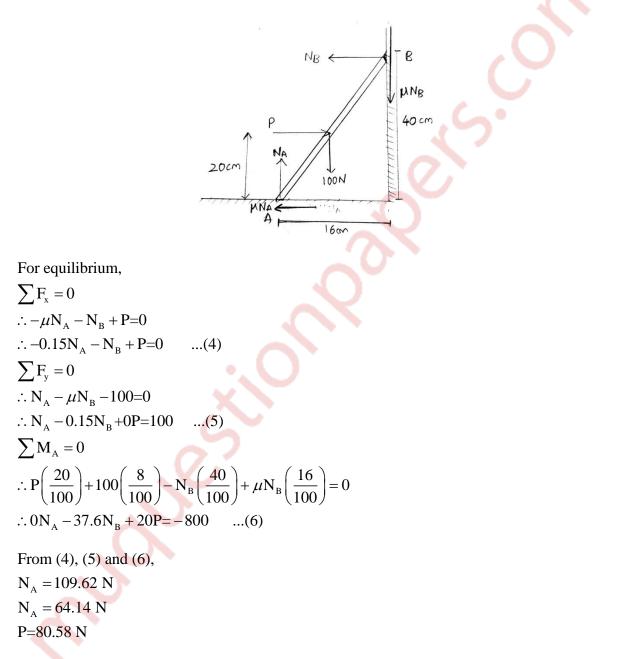
W_I = $\frac{V_B}{IB} = \frac{3.3}{1.56} = 2.12 \text{ r/s}$ V_A = W_I×(IA)=(2.12)(0.9) ∴ V_A = 1.91 m/s ∴ W= $\frac{V_A}{R} = \frac{1.91}{0.3} = 6.37 \text{ r/s}$

The angular velocity of wheel =6.37 r/s and the velocity of the rod =1.91 m/s Q6.Attempt:

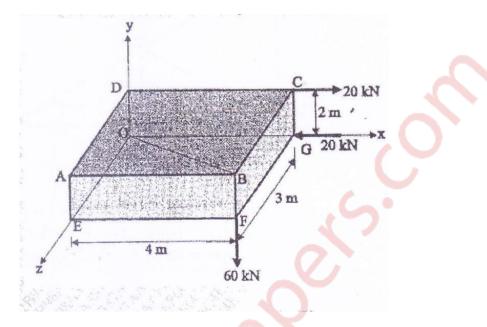

(a) A 100 N uniform rod AB is held in position as shown. If $\mu = 0.15$ at A and B calculate range of value of P for which equilibrium is maintained. (08 marks)

Solution:

Let N_A and N_B be the normal reactions at A and B respectively


For minimum value of P, FBD is,

$$\therefore 0N_{A} - 42.4N_{B} + 20P = -800$$
 ...(3)


From (1), (2) and (3), $N_A = 96.58 \text{ N}$ $N_A = 22.78 \text{ N}$ P=8.29 N

For maximum value of P, FBD is,

[:] The range of value of P for which equilibrium is maintained is from 8.29 N to 80.58 N

(b) A box of size $3 \times 4 \times 2$ m is subjected to three forces as shown in fig. Find in vector form the sum of moments of the three forces about diagonal OB. (06 marks)

Solution:

The three forces are given as

$$\overline{F_{DC}} = 20\hat{i} \text{ kN}$$

$$\overline{F_{GO}} = -20\hat{i} \text{ kN}$$

$$\overline{F_{BF}} = -60\hat{j} \text{ kN}$$
The unit vector along the direction OB is
$$\hat{OB} = \frac{(4-0)\hat{i} + (2-0)\hat{j} + (3-0)\hat{k}}{\sqrt{4^2 + 2^2 + 3^2}}$$

$$=\frac{4\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{29}}$$

The vector moment of force $\mathbf{F}_{\rm DC}$ along OB is

$$\overline{\mathbf{M}} = \begin{bmatrix} \overline{\mathbf{OC}} & \mathbf{F}_{\mathrm{DC}} & \mathbf{OB} \end{bmatrix} \hat{\mathbf{OB}}$$
$$\overline{\mathbf{M}} = \begin{bmatrix} 4 & 2 & 0 \\ 20 & 0 & 0 \\ \frac{4}{\sqrt{29}} & \frac{2}{\sqrt{29}} & \frac{3}{\sqrt{29}} \end{bmatrix} \hat{\mathbf{OB}}$$

$$\therefore \overline{\mathbf{M}} = -20 \left(\frac{6}{\sqrt{29}} \right) \hat{\mathbf{OB}}$$
$$\overline{\mathbf{M}} = \frac{-120}{\sqrt{29}} \left[\frac{4\hat{i} + 2\hat{j} + 3\hat{k}}{\sqrt{29}} \right]$$
$$\therefore \overline{\mathbf{M}} = -16.55\hat{i} - 8.28\hat{j} - 12.41\hat{k}$$

The vector moment of force $\mathbf{F}_{\! \mathrm{GO}}$ along OB is

$$\overline{\mathbf{M}} = \begin{bmatrix} \overline{\mathbf{OG}} & \mathbf{F}_{\mathrm{GO}} & \mathbf{OB} \end{bmatrix} \hat{\mathbf{OB}}$$

$$\overline{\mathbf{M}} = \begin{vmatrix} 4 & 0 & 0 \\ -20 & 0 & 0 \\ \frac{4}{\sqrt{29}} & \frac{2}{\sqrt{29}} & \frac{3}{\sqrt{29}} \end{vmatrix} \hat{\mathbf{OB}}$$

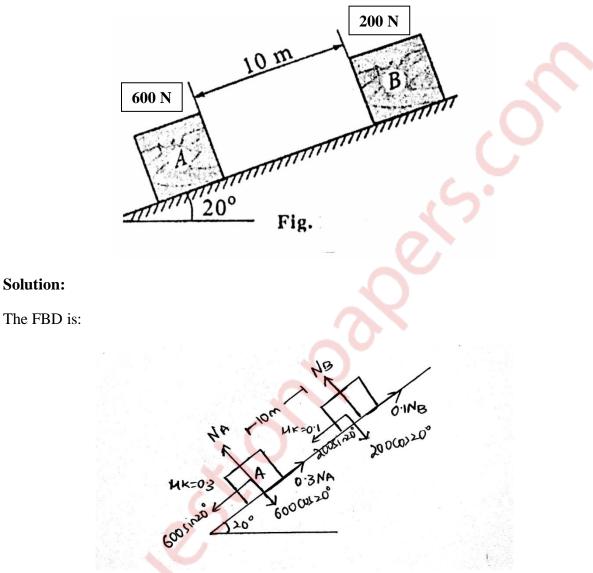
$$\therefore \overline{\mathbf{M}} = 20 \left(\frac{6}{\sqrt{29}} \right) \hat{\mathbf{OB}}$$

$$\overline{\mathbf{M}} = \frac{120}{\sqrt{29}} \left[\frac{4\hat{i} + 2\hat{j} + 3\hat{k}}{\sqrt{29}} \right]$$

$$\therefore \overline{\mathbf{M}} = 16.55\hat{i} + 8.28\hat{j} + 12.41\hat{k}$$

The vector moment of force F_{BF} along OB is

$$\overline{\mathbf{M}} = \begin{bmatrix} \overline{\mathbf{OB}} & \mathbf{F}_{\mathrm{BF}} & \mathbf{OB} \end{bmatrix} \mathbf{OB}$$


$$\overline{\mathbf{M}} = \begin{vmatrix} 4 & 2 & 3 \\ -20 & 0 & 0 \\ \frac{4}{\sqrt{29}} & \frac{2}{\sqrt{29}} & \frac{3}{\sqrt{29}} \end{vmatrix}$$

$$\therefore \mathbf{\overline{M}} = \mathbf{OOB} \qquad \dots \{ \text{Since 2 rows of the matrix are equal} \}$$

$$\therefore \mathbf{\overline{M}} = \mathbf{O}\hat{i} + \mathbf{O}\hat{j} + \mathbf{O}\hat{k} \end{bmatrix}$$

ي مر

(c) Two blocks A and B are separated by 10 m as shown in fig on 20° incline plane. If the blocks start moving, find the time t when the blocks collide and distance travelled by each block. Assume $\mu_k = 0.3$ for block A and block A and plane and $\mu_k = 0.10$ for block B and plane. (06 marks)

Let the time taken by the blocks to meet be t seconds

Let the distance travelled by block A be x m

$$\therefore x = 0 + \frac{1}{2}(a_A)t^2$$
(1), a_A = Acceleration of block A

Hence, distance travelled by block B is

$$x+10 = 0 + \frac{1}{2}(a_B)t^2$$
(2), a_B = Acceleration of block B

From the FBD,

On block A,

mass of block $A=m_A = \frac{600}{g} = \frac{600}{9.8} = 61.22 \text{ kg}$ $600 \cos(20^\circ) = (N_A)$ $\therefore N_A = 563.82 \text{ N}$ $600 \sin(20^\circ) - 0.3 N_A = m_A a_A$ $\therefore a_A = 0.589 \text{ m/s}^2$

On block B,

mass of block $B=m_B = \frac{200}{g} = \frac{200}{9.8} = 20.41 \text{ kg}$ $200 \cos(20^\circ) = (N_B)$ $\therefore N_B = 187.94 \text{ N}$ $200 \sin(20^\circ) - 0.1 N_B = m_B a_B$ $\therefore a_B = 2.43 \text{ m/s}^2$

By putting the values of a_A and a_B in equations (1) and (2),

$$x = \frac{1}{2} (0.589) t^{2} \dots (3) \text{ and } x + 10 = \frac{1}{2} (2.43) t^{2} \dots (4)$$

Dividing equation (3) by (4),
$$\frac{x}{x+10} = \frac{\frac{1}{2} (0.589) t^{2}}{\frac{1}{2} (2.43) t^{2}}$$
$$\therefore x = 3.2 \text{ m}$$

From (3)
$$t = \sqrt{\frac{2(3.2)}{0.589}} = 3.3 \text{ s}$$

The blocks collide after time=3.3 seconds and the distance travelled by block A is 3.2 m and that by block B is (3.2+10) m=13.2 m.