MUMBAI UNIVERSITY

SEMESTER-1

ENGINEERING MECHANICS SOLVED PAPER-MAY 2017

N.B:-(1)Question no.1 is compulsory.

(2)Attempt any 3 questions from remaining five questions.

(3)Assume suitable data if necessary, and mention the same clearly.

(4) Take g=9.81 m/s², unless otherwise specified.

Q.1(a) In the rocket arm shown in the figure the moment of 'F' about 'O' balances that P=250 N.Find F. (4 marks)

Solution :

Given : P = 250 N

To find : Magnitude of force F

Solution :

Magnitude of force F = 223.6068 N

Q.1(b) State Lami's theorem.

State the necessary condition for application of Lami's theorem.

Answer :

Lami's theorem states that if three forces acting at a point are in equilibrium, each force is proportional to the sine of the angle between the other two forces.

According to Lami's theorem, the particle shall be in equilibrium if :

 $\frac{A}{\sin\alpha} = \frac{B}{\sin\beta} = \frac{C}{\sin\gamma}$

The conditions of Lami's theorem are:

(1)Exact 3 forces must be acting on the body.

(2)All the forces should be either converging or diverging from the body.

(4 marks)

Q.1(c)A homogeneous cylinder 3 m diameter and weighing 400 N is resting on two rough inclined surface's shown. If the angle of friction is 15°. Find couple C applied to the cylinder that will start it rotating clockwise. (4 marks)

Solution :

Given : Angle of friction is 150

 $\mu = \tan 15 = 0.2679$

Radius = 1.5 m

To find : Couple C

Solution:

$F_1 = \mu N_1 = 0.2679 N_1$	(1)	
$F_2 = \mu N_2 = 0.2679 N_2$	(2)	
Assuming the body is in equilibrium		

ΣFx=0

 $F_1cos40+N_1sin40+F_2cos60-N_2sin60=0$

 $N_1(0.2679\cos 40 + \sin 40) + N_2(0.2679\cos 60 - \sin 60) = 0$ (3)

ΣFy=0

 $-F_1\sin 40 + N_1\cos 40 + F_2\sin 60 + N_2\cos 60 - 400 = 0$

 $N_1(-0.2679\sin 40 + \cos 40) + N_2(0.2679\sin 60 + \cos 60) = 400$

Solving (3) and (4)

N_1 =277.4197 N and N_2 =321.3785 N

Substituting N1 and N2 in (1 and 2)

F₁=0.2679 x 277.4197 = 74.3344 N

 $F_2=0.2679 \times 321.3785 = 86.1131 \text{ N} \dots (5)$

C is the couple required to rotate the cylinder clockwise

$$C=F_1 x r + F_2 x r$$

= 240.6712 Nm(clockwise) (r=1.5 m)(From 5)

The couple C required to rotate the cylinder clockwise is 240.6712 Nm(clockwise)

Solution:

We know that the area under v-t graph gives the distance travelled

DISTANCE TRAVELLED IN 0 TO 10 sec = $A(\triangle OAB)$

 $= \frac{1}{2} \times OA \times AB$ $= \frac{1}{2} \times 10 \times 10$ = 50 m

DISTANCE TRAVELLED IN 0 TO 50 sec = A(Trapezium OBDE)

$$= \frac{1}{2} x (OE+BD) x AB$$
$$= \frac{1}{2} x (50+10) x 10$$

= 300 m

CONSIDER THE MOTION FROM 20 sec TO 50 sec

We know that slope of v-t graph gives acceleration

E=(50,0) and D=(20,10)

Slope of line DE= $\frac{0-10}{50-20} = \frac{-1}{3} = -0.3333 \text{ m/s}^2$

Distance travelled by object in 10 sec = 50 m

Distance travelled by object in 50 sec = 300 m

Acceleration = -0.3333 m/s2

Q1(e) $Blocks P_1$ and P_2 are connected by inextensible string. Find velocity of block P_1 , if it falls by 0.6 m starting from rest.

The co-efficient of friction is 0.2. The pulley is frictionless.

```
(4 marks)
```


Solution:

Given : P₁ falls by 0.6 m starting from rest

 $\mu = 0.2$

To find : Velocity of block P1

Solution :

Consider the motion of block P_2

Weight of motion $P_2 = 8 N$

Mass of $P_2 = \frac{8}{g}$

P2 has no vertical motion

$$\Sigma F_y = 0$$

 $N_2 - 8 = 0$

 $N_2\!=8\ N$

 $F_2 \,{=}\, \mu N_2$

Consider the horizontal motion

$\Sigma F_x = m_2 a$

 $T - F_2 = m_2 a$

For block P_1 Weight of $P_1 = 4 N$

Mass of
$$P_1 = \frac{4}{a}$$

For downward motion

 $\Sigma F_y = m_1 a$

 $4-T = m_1 a$

4 - 1.6 - $\frac{8}{g}a = \frac{4}{g}a$ (From 1 and 2)

(2)

 $a = 1.962 \text{ m/s}^2$

 $v^2 = u^2 + 2as$

u = 0 and s = 1.6 m

Substituting the values in equation

v = 1.5344 m/s

Solution :

Given : Various forces acting on a body

To find : Resultant of the forces and intersection of resultant with AB and BC

Solution :

In \triangle AFG ,

 $\tan \alpha = \frac{AG}{AF} = \frac{DE}{BH} = \frac{3}{2} = 1.5$ $\alpha = \tan^{-1}(1.5) = 56.31^{\circ}$

In ∆DAE,

 $\tan \theta = \frac{DE}{AD} = \frac{DE}{BC} = \frac{3}{4} = 0.75$ $\theta = \tan^{-1} 0.75 = 36.87^{\circ}$

In △DHC

 $\tan\beta = \frac{DC}{HC} = \frac{6}{2} = 3$ $\beta = \tan^{-1}(3)$

 $\beta = 71.565^{\circ}$

Assume R be the resultant of the forces

 $\Sigma F_x = -722 cos \ \alpha + 1000 cos \ \theta + 632 cos \ \beta$

= 599.3624 N

 $\Sigma F_y = -722 \sin \alpha - 1000 \sin \theta + 632 \sin \beta$

= -601.1725 N

 $R = \sqrt{(\Sigma F x)^2 + (\Sigma F y)^2}$

 $R = \sqrt{(599.3624)^2 + (-601.1725)^2}$

$$\phi = \tan^{-1}(\frac{\Sigma Fy}{\Sigma Fx})$$
$$= \tan^{-1}(\frac{-601.1725}{599.3624})$$

= 45.0863° (in fourth quadrant)

Let R cut AB and BC at points M and N respectively

Draw AL $\perp R$

Taking moments about point A $M_A = 632 \sin \beta x \text{ AD} - 722 \cos \alpha x \text{ AG}$ = 632 x sin71.5650 x 4 - 722cos56.31° x 3 =1196.7908 Nm **Applying Varigon's theorem** $M_A = R \times AL$ 1196.7908 = 848.9073 x AL AL=1.4098 m In ∆AML, $\cos \Phi = \frac{AL}{AM}$ $\cos 45.0863 = \frac{1.4098}{AM}$ AM = 1.9967 m MB = AB - AM= 6 - 1.9967 = 4.0033 mIn ∆BMN $\tan \Phi = \frac{BM}{BN}$ $\tan 45.0863 = \frac{4.0033}{BN}$ BN = 3.9912 m R=848.9073 N (45.0863° in fourth quadrant)

Resultant force intersects AB and BC at M and N such that AM=1.9967 m and BN=3.9912 m

Q.2(b) Two cylinders 1 and 2 are connected by a rigid bar of negligible weight hinged to each cylinder and left to rest in equilibrium in the position shown under the application of force P applied at the center of cylinder 2.

Determine the magnitude of force P.If the weights of the cylinders 1 and 2 are 100N and 50 N respectively. (8 marks)

Solution :

Given : $W_1 = 100 N$

 $W_2 = 50 N$

Cylinders are connected by a rigid bar

To find : Magnitude of force P

Solution :

Consider cylinder I

Applying Lami's theorem :

 $\frac{R}{\sin(90+30)} = \frac{W}{\sin(60+75)} = \frac{N_1}{\sin(90+15)}$ $R = \frac{100}{\sin 135} \times \sin 120$

R = 122.4745 N

Cylinder 2 is under equilibrium

Applying conditions of equilibrium

 $\Sigma Fy = 0$

 $N_2 \sin 45 - R \sin 15 - P \sin 45 - W = 0$

 $N_2 \sin 45 - P \sin 45 = 122.4745 \ge 0.2588 + 50$

 $N_2 \sin 45 - P \sin 45 = 81.6987 \dots (1)$

Applying conditions of equilibrium

 $\Sigma F x = 0$

 $-N_2cos45+Rcos15-Pcos45=0$

N₂cos45+Pcos 45=118.3013(2)

Solving (1) and (2)

P=25.8819 N

Magnitude of force P required = 25.8819 N

Q.2(c) Just before they collide, two disk on a horizontal surface have velocities shown In figure.

Knowing that 90 N disk A rebounds to the left with a velocity of 1.8 m/s.Determine the rebound velocity of the 135 N disk B.Assume the impact is perfectly elastic.

(6 marks)

Solution :

Given : $W_A = 90N$

 $W_B = 135 N$

Taking velocity direction towards right as positive and towards left as negative

Initial velocity of disk A= 3.6 m/s

Final velocity of disk A=-1.8 m/s

Initial velocity of disk B=3 m/s

To find : Rebound velocity of disk B

Solution :

 $m_{\rm A} = \frac{90}{g} \text{ kg}$ $m_{\rm B} = \frac{135}{g} \text{ kg}$

Consider the X and Y components of uB

 $u_{BX} = -u_B \cos 35 = -2.4575 \text{ m/s}$

 $u_{BY} = -u_B \sin 35 = -1.7207 \text{ m/s}$

APPLYING LAW OF CONSERVATION OF MOMENTUM:

 $\mathbf{m}_{\mathbf{A}}\mathbf{u}_{\mathbf{A}} + \mathbf{m}_{\mathbf{B}}\mathbf{u}_{\mathbf{B}} = \mathbf{m}_{\mathbf{A}}\mathbf{v}_{\mathbf{A}} + \mathbf{m}_{\mathbf{B}}\mathbf{v}_{\mathbf{B}}$

 $\frac{90}{g} \ge 3.6 + \frac{135}{g} \ge (-2.4575) = \frac{90}{g} \ge (-1.8) + \frac{135}{g} \ge v_{\rm BX}$

 $v_{BX} = 1.1425 \text{ m/s}$

As the impact takes place along X-axis, the velocities of two disks remains same along Yaxis

 $v_{BY} = u_{BY} = -1.7207 \text{ m/s}$ $v = \sqrt{(v_{BX})^2 + (v_{BY})^2}$ $v = \sqrt{1.1425^2 + (-1.7207)^2}$ v = 2.0655 m/s

$$\alpha = \tan^{-1}(\frac{-1.7207}{1.1425})$$

 $\alpha = 56.4169^{\circ}$

VELOCITY OF DISK B AFTER IMPACT = 2.0655 m/s (56.41690 in fourth quadrant)

Solution :

 $\mathbf{Y} = \mathbf{X}$ is the axis of symmetry

The centroid would lie on this line

Sr.no.	PART	AREA(in mm2)	X co- ordinate(mm)	Ax(mm3)
--------	------	--------------	-----------------------	---------

1.	RECTANGLE	=1000 X 1000 =1000000	$\frac{1000}{2} = 500$	500000000
2.	TRIANGLE (to be removed)	$\frac{1}{2}$ X 750 X 750	$1000 - \frac{750}{3}$	-210937500
		= -281250	= 750	
3.	QUARTER CIRCLE (To be	$\frac{\pi r^2}{4}$	$\frac{4 X 750}{3\pi}$	-140625000
	Tenioved)	= 441786.4669	= 3141.5926	, C
	TOTAL	276063 4660		148437500
$\overline{X} = \frac{\Sigma A x}{\Sigma A} = \frac{148437500}{276963.533}$	$\frac{1}{2} = 535.946 \text{ mm}$	270905.4009	5	146457500

 $\overline{y} = \overline{X} =$ **535.946 mm**

CENTROID IS AT (535.946,535.946)mm

Q.3(b) Co-ordinate distance are in m units for the space frame in figure.

There are 3 members AB,AC and AD.There is a force W=10 kN acting at A in a vertically upward direction.

Determine the tension in AB,AC and AD.

(6 marks)

Solution :

Given : A = (0,24,0) B = (0,0,-7) C = (8,0,8)D = (-12,0,8)

To find : Tension in AB,AC and AD.

Solution :

Assume $\bar{a}, \bar{b}, \bar{c}, \bar{d}$ be the position vectors of points A,B,C,D with respect to origin O.

- $\overline{OA} = \overline{a} = 24\overline{j}$ $\overline{OB} = \overline{b} = -7\overline{k}$ $\overline{OC} = \overline{c} = 8\overline{i} + 8\overline{k}$ $\overline{OD} = \overline{d} = -12\overline{i} + 8\overline{k}$ $\overline{AB} = \overline{b} \overline{a} = -24\overline{j} 7\overline{k}$ Magnitude = 25
 Unit vector = $\frac{-24\overline{j} 7k}{25}$ Unit vector = $\frac{-24\overline{j} 7k}{25}$ Unit vector = $\frac{8(i-3\overline{j}+k)}{8\sqrt{11}}$
- $\overline{AD} = \overline{d} \overline{a} = 4(-3\overline{\iota} 6\overline{j} + 2\overline{k})$

Magnitude = 28

Unit vector = $\frac{4(-3i-6j+2k)}{28}$

Assume T₁,T₂ and T₃ be the tensions along AB,AC and AD

$$T_{1} = T_{1}(\frac{-24j-7k}{25})$$
$$T_{2} = T_{2}(\frac{8(i-3j+k)}{8\sqrt{11}})$$
$$T_{3} = T_{3}(\frac{4(-3i-6j+2k)}{28})$$

A force of 10kN is acting at point A in vertically upward direction

Applying conditions of equilibrium

 $10\overline{j} + T_1 + T_2 + T_3 = 0$

$$-10\overline{j} = T_{1}(\frac{-24j-7k}{25}) + T_{2}(\frac{8(i-3j+k)}{8\sqrt{11}}) + T_{3}(\frac{4(-3i-6j+2k)}{28})$$
$$0\overline{\iota} - 10\overline{j} + 0\overline{k} = T_{1}(\frac{-24j-7k}{25}) + T_{2}(\frac{8(i-3j+k)}{8\sqrt{11}}) + T_{3}(\frac{4(-3i-6j+2k)}{28})$$

Comparing both sides of equation

$$\frac{T2}{\sqrt{11}} - \frac{3T_3}{7} = 0$$
$$\frac{-24T_1}{25} - \frac{3T_2}{\sqrt{11}} - \frac{6T_3}{7} = -10$$
$$\frac{-7T_1}{25} \frac{T_2}{\sqrt{11}} + \frac{2T_3}{7} = 0$$

Solving the equations simultaneously

T₁=5.5556 N

 $T_2 = 3.0955 N$

T₃=2.1778

 $T_{AB} = -5.3333 \,\overline{j} - 1.5556 \,\overline{k}$ $T_{AC} = 0.9333 \,\overline{i} - 2.8 \,\overline{j} + 0.9333 \,\overline{k}$ $T_{AD} = -0.9333 \,\overline{i} - 1.8667 \,\overline{j} + 0.6222 \,\overline{k}$

Q.3(c) A 50 N collar slides without friction along a smooth and which is kept inclined at 60° to the horizontal.

The spring attached to the collar and the support C.The spring is unstretched when the roller is at A(AC is horizontal).

Determine the value of spring constant k given that the collar has a velocity of 2.5 m/s when it has moved 0.5 m along the rod as shown in the figure. (6 marks)

Mass of collar = $\frac{50}{g}$ kg

Let us assume that h = 0 at position 2

POSITION 1 :

 $\mathbf{x} = \mathbf{0}$

$$E_{s1} = \frac{1}{2} x k x x_1^2 = 0$$

 $h_1 = 0.5 \sin 60 = 0.433 m$

PE1=mgh1=21.65 J

 $v_A\!=\!0\ m\!/s$

 $KE_1=0J$

POSITION II :

 $v_B=2.5\ m/s$

 $PE_2 = mgh = 0 J$ (because h=0)

$$\text{KE}_2 = \frac{1}{2} X m v^2 = \frac{1}{2} X \frac{50}{g} X 2.5^2$$

 $In \ {\vartriangle} ABC$

Applying cosine rule

$BC^{2} = AB^{2} + AC^{2} - 2 X AB X AC X \cos(BAC)$

 $= 0.5^2 + 0.5^2 - 2 \ge 0.5 \ge 0.5 \ge 0.5 \ge 0.5$

= 0.75

BC = 0.866 m

Un-stretched length of the spring = 0.5 m

Extension of spring(x) = 0.866 - 0.5

=0.366 m

$$E_{s2} = \frac{1}{2} x k x_2^2$$

= 0.067k

APPLYING WORK ENERGY PRINCIPLE

 $\mathbf{U}_{1-2} = \mathbf{K}\mathbf{E}_2 - \mathbf{K}\mathbf{E}_1$

 $PE_1 - PE_2 + E_{S1} - ES_2 = KE_2 - KE_1$

21.6506-0+0-0.067K=15.9276-0

K = 85.4343 N/m

SPRING CONSTANT IS 85.4343 N/m

Q.4(a) A boom AB is supported as shown in the figure by a cable runs from C over a small smooth pulley at D.

Compute the tension T in cable and reaction at A.Neglect the weight of the boom and size of the pulley. (8 marks)

Solution :

Given : Beam AB is supported by a cable

To find : Tension T in cable

Reaction at A

Solution :

 $\tan \alpha = \frac{2}{1}$ $\alpha = 63.4349^{\circ}$ $\tan \theta = \frac{4}{3}$ $\theta = 53.13^{\circ}$

Assume H_A and V_A be the horizontal and vertical reaction forces at A

AC = AE + EC = 0.6 + 0.6 = 1.2AB = AC + CB = 1.2 + 0.6 = 1.8 $AF = AB\cos \theta = 1.8\cos 53.13 = 1.08$ $AH = AE\cos \theta = 0.6\cos 53.13 = 0.36$

BEAM AB IS INDER EQUILIBRIUM

Applying conditions of equilibrium

 $\Sigma M_A = 0$

-445 X AF - 890 X AH + Tsin63.4349 X AC = 0

T X 0.8944 X 1.2 = 445 X 1.08 + 890 X 0.36

T = 746.2877 N

$\Sigma \mathbf{F}_{\mathbf{X}} = \mathbf{0}$

 $H_A - T\cos 63.4349 = 0$

H_A=333.75 N

$\Sigma \mathbf{F}_{\mathbf{Y}} = \mathbf{0}$

 $V_A + Tsin63.4349 - 890 - 445 = 0$

 $V_{\rm A} = 667.5 \ N$

$$\mathbf{R}_{A} = \sqrt{H_{A}^{2} + V_{A}^{2}}$$

$$\mathbf{R}_{A} = \sqrt{(333.75)^{2} + (667.5)^{2}}$$

$$\mathbf{R}_{A} = \mathbf{746.2877 N}$$

$$\Phi = \tan^{-1}(\frac{V_{A}}{H_{A}})$$

$$\Phi = \tan^{-1}(\frac{667.5}{333.75})$$

Φ=63.4395°

Tension in cable = 746.2877 N (63.43949° in second quadrant)

Reaction at $A = 746.2877 \text{ N} (63.4395^{\circ} \text{ in first quadrant})$

Q.4(b) The acceleration of the train starting from rest at any instant is given by the expression $a = \frac{8}{v^2+1}$ where v is the velocity of train in m/s.

Find the velocity of the train when its displacement is 20 m and its displacement when velocity is 64.8 kmph. (6 marks)

Solution :

Given : $a = \frac{8}{v^2 + 1}$

To find : Velocity when displacement is 20 m

Displacement when velocity is 64.8 kmph.

Solution :

$$\mathbf{a} = \mathbf{v} \frac{dv}{dx}$$
$$\mathbf{v} \frac{dv}{dx} = \frac{8}{v^2 + 1}$$

 $v(v^2+1)dv = 8dx$

Integrating both sides

 $\int v(v^2+1)dv = \int 8dx$

Multiplying by 4 on both sides

 $V^4 + 2v^2 = 32x + 4c$

Substituting v=0 and x=0 in (1)

c=0 From (1)

$$V^4 + 2v^2 = 32x$$
(2)

Case 1 : x=20 m $V^4 + 2v^2 = 32 \times 20$ (From 2) $V^4 + 2v^2 - 640 = 0$ Solving the equation $V^2 = 24.3180$ V=4.9361 m/s

Case 2 : V=64.8 kmph(or v = 18 m/s) 18⁴ + 2 x 18² = 32x(From 2) 1.5624 = 32x x = 3300.75 m

When displacement of train is 20 m,then velocity is 4.9361 m/s

When velocity of the train is 64.8 kmph, then its displacement is 3300.75m

In $\triangle IAD$

 $\begin{array}{l} {\scriptstyle \angle A = {\scriptstyle \angle D = 60^{\circ}} \\ {\scriptstyle \angle I = 60^{\circ}} \end{array}$

△ IAD is equilateral

IA = ID = AD = 3 cm

IB + AB = IA

IB = 2 cm

Similarly, we can solve that IC = 1 cm

$\mathbf{v} = \mathbf{r}\boldsymbol{\omega}$

 $v_B = IB \ x \ \omega_{BC} = 8 \ m/s$

 $v_C = IC \ x \ \omega_{BC} = 4 \ m/s$

 $\omega_{AB} = \frac{v_B}{AB} = \frac{8}{1} = 8 \text{ rad/s}(\text{Anti-clockwise})$

 $\omega_{\rm DC} = \frac{v_c}{DC} = \frac{4}{2} = 2 \text{ rad/s}(\text{Anti-clockwise})$

Angular velocity of AB=8 rad/s(Anti-clockwise)

Angular velocity of CD=2 rad/s(Anti-clockwise)

Solution :

We can say that FD,GH and CB are zero force members in the given truss

Joint A :

Applying the conditions of equilibrium

ΣFy=0

 $-1 - F_{AC} \sin 30 = 0$

 $F_{AC} = -2kN$

Applying the conditions of equilibrium

 $\Sigma F x = 0$

 $F_{AB} + F_{AC}\cos 30 = 0$

 $F_{AB} = 1.7321 \text{ Kn}$

JOINT C :

Applying the conditions of equilibrium

 $\Sigma F x = 0$

 $F_{CE} = F_{CA} = -2kN$

JOINT B :

Applying the conditions of equilibrium

 $\Sigma Fy = 0$

 $-1 - F_{BE} \sin 60 = 0$

FBE = -1.1547 kN

Applying the conditions of equilibrium

 $\Sigma F x = 0$

 $-F_{BA} + F_{BE} cos 60 + F_{BD} = 0$

 $F_{BD} = 2.3094 \text{ kN}$

JOINT D :

Applying the conditions of equilibrium

 $\Sigma Fy = 0$

 $-1 - F_{DE}sin60 = 0$

 $F_{DE} = -1.1547 \text{ kN}$

Applying the conditions of equilibrium

 $\Sigma F x = 0$

 $-F_{DB} - F_{DE} \cos 60 + F_{DG} = 0$

 $F_{DG} = 1.7321 \text{ kN}$

JOINT E :

$$F_{EB}$$

$$F_{EC}$$

$$F_{EC}$$

$$F_{EC}$$

$$F_{EC}$$

$$F_{EF}$$

$$F_{EF}$$

$$F_{EF}$$

Applying the conditions of equilibrium $\Sigma Fy = 0$ $F_{ED} + F_{EF}cos30 + F_{EB}sin30 = 0$ $F_{EF}cos30 = -(-1.1547)-(-1.1547) \ge \frac{1}{2}$

 $F_{EF} = 2kN$

Applying the conditions of equilibrium

 $\Sigma F x = 0$

 $\label{eq:Fec} \textbf{-}F_{EC} + F_{EH} + F_{EF}sin30 \textbf{-} F_{EB}cos30 = 0$

 $F_{EH} = F_{EC} - F_{EF} sin 30 + F_{EB} cos 30$

FEH = -4kN

Joint F :

Applying the conditions of equilibrium

. .

 $\Sigma F x = 0$

 $F_{FG} = F_{FE} = -2kN$

Final answer :

Sr.no.	MEMBER	MAGNITUDE OF FORCE (in kN)	NATURE OF FORCE
1.	AC	2	COMPRESSION
2.	AB	1.7321	TENSION
3.	СВ	0	-
4.	CE	2	COMPRESSION
5.	BE	1.1547	COMPRESSION
6.	BD	2.3094	TENSION
7.	DE	1.1547	COMPRESSION

8.	DG	1.7321	TENSION
9.	EF	2	TENSION
10.	EH	4	COMPRESSION
11.	FD	0	
12	FG	2	COMPRESSION
13.	GH	0	$\overline{\mathbf{C}}$

Q.5(b) Determine the speed at which the basket ball at A must be thrown at an angle 30° so that if makes it to the basket at B.

Also find at what speed it passes through the hoop.

(6 marks)

Solution :

Given : θ=30°

To find : Speed at which basket ball must be thrown

Solution :

Assume that the basket ball be thrown with initial velocity u and it takes time t to reach B

HORIZONTAL MOTION

Here the velocity is constant

 $8 = u\cos 30 x t$

 $v_B = u\cos 30$ (Since velocity is constant in horizontal motion)

VERTICAL MOTION

Initial vertical velocity $(u_v) = u\sin 30 = 0.5u$ (3)

Vertical displacement(s) = 2.4 - 1.2 = 1.2

$$t = \frac{9.2376}{n}$$

Using kinematical equation :

$$s = ut + \frac{1}{2}x at^2$$

$$1.2 = \frac{u}{2} \ge \frac{9.2376}{u} - \frac{1}{2} \ge 9.81 \ge (\frac{9.2376}{u})^2$$
$$u^2 = 122.4289$$

u=11.0648 m/s

 $u_v=0.5u$ (From 3)

 $u_v = 0.5 \ x \ 11.0648$

= 5.5324 m/s

Using kinematical equation

 $v_v^2 = u_v^2 + 2as$

 $v_v^2 = 5.5324^2 - 2 \times 9.81 \times 1.2$

 $v_v = 2.6622 \text{ m/s}$

 $v_h = 11.0648\cos 30 = 9.5824$ m/s (From 2)

 $v_{\rm B} = \sqrt{v_v^2 + v_h^2}$

 $v_B = 9.9441 \text{ m/s}$

.....(2)

$$\alpha = \tan^{-1}(\frac{2.6577}{9.5824})$$
$$= 15.5015^{\circ}$$

Speed at which the basket-ball at A must be thrown = 11.0648 m/s (30° in first) quadrant)

Speed at which the basket-ball passes through the hoop = $9.9441 \text{ m/s}(15.5015^{\circ} \text{ in})$ fourth quadrant)

Q.5(c) Figure shows a collar B which moves upwards with constant velocity of 1.5 m/s.At the instant when $\theta = 50^{\circ}$. Determine :

(i)The angular velocity of rod pinned at B and freely resting at A against 25o sloping ground.

 v_{B}

(ii) The velocity of end A of the rod.

(6 marks)

Solution:

ICR is shown in the given figure

BY USING GEOMETRY:

In $\triangle ABC$

- $\angle ABC = 50$
- $\angle ACB = 90$
- $\angle BAC = 40$
- $\angle CAV = 25$
- $\angle BAV = 40 25 = 15$
- $IA \perp V_A$
- $\angle IAB = 90 15 = 75$
- $\angle IBA = 90 50 = 40$

In $\triangle IBA$

- $\angle BIA = 180 75 = 65$
- $In \ {\vartriangle} IBA$

AB=1.2 m

APPLYING SINE RULE

 $\frac{AB}{\sin I} = \frac{IB}{\sin A} = \frac{IA}{\sin B}$ $\frac{1.2}{\sin 65} = \frac{IB}{\sin 75} = \frac{IA}{\sin 40}$

IB=1.2789 m

IA=0.8511 m

Assume ω_{AB} be the angular velocity of AB

 $\omega_{AB} = \frac{v_B}{r} = \frac{v_B}{IB} = \frac{1.5}{1.2789} = 1.1728 \text{ rad/s}$ $v_A = r \text{ x AB} = IA \text{ x } \omega_{AB} = 0.8511 \text{ x } 1.7288 = 0.99825 \text{ m/s}$

Angular velocity of rod AB= 1.1728 rads (Anti-clockwise)

Instantaneous velocity of $A = 0.9982 \text{ m/s}(25^{\circ} \text{ in first quadrant})$

Q.6(a) A force of 140 kN passes through point C (-6,2,2) and goes to point B (6,6,8).Calculate moment of force about origin.(4 marks)

Solution :

Given : C (-6,2,2)

B (6,6,8)

To find : Moment of force about origin

Solution :

Assume \overline{b} and \overline{c} be the position vectors of points B and C respectively w.r.t O (0,0,0)

$$\overline{OB} = \overline{b} = 6\overline{\iota} + 6\overline{j} + 8\overline{k}$$

$$\overline{OC} = -6\overline{\iota} + 2\overline{j} + 2\overline{k}$$

$$\overline{CB} = (6\overline{\iota} + 6\overline{j} + 8\overline{k}) - (-6\overline{\iota} + 2\overline{j} + \overline{k})$$

$$= 2 (6\overline{\iota} + 2\overline{j} + 3\overline{k})$$

$$|\overline{CB}| = 2 x\sqrt{6^2 + 2^2 + 3^2}$$

$$= 14$$

Unit vector along $\overline{CB} = \frac{CB}{|CB|} = \frac{6i+2j+3k}{7}$

Force along $\overline{CB} = \overline{F} = 140 \text{ x} \frac{6i+2j+3k}{7}$ = $120 \overline{\iota} + 40\overline{j} + 60\overline{k}$ Moment of \overline{F} about $O = \overline{OB} \text{ x} \overline{F}$ $i \quad j \quad k$ $6 \quad 6 \quad 8$ $120 \quad 40 \quad 60$

 $=40 \bar{\iota} + 600\bar{\jmath} - 480k$

Moment of F about C is 40 \overline{i} + 600 \overline{j} - 480 \overline{k} kNm

Q.6(b) Refer to figure. If the co-efficient of friction is 0.60 for all contact surfaces and θ = 30°, what force P applied to the block B acting down and parallel to the incline will start motion and what will be the tension in the cord parallel to inclined plane attached to A.

30

Take W_A =120 N and W_B =200 N.

(8 marks)

Solution :

Given : : μ=0.6

 $\theta = 30^{\circ}$

 $W_A = 120 \ N$

$$W_{\rm B} = 200 \ {\rm N}$$

To find : Force P

Solution :

$F_1 = \mu N_1 = 0.6 N_1$	(1)
$F_2 \!= \mu N_2 \!= 0.6 N_2$	(2)

Consider FBD of block A

The block is considered to be in equilibrium

Applying conditions of equilibrium

 $\Sigma Fy = 0$

 $N_1 - 120cos30 = 0$

$N_1 = 103.923 N$(3)

From (1)

 $F_1 = 0.6 \ x \ 103.923$

= 62.3538 N

Applying conditions of equilibrium

 $\Sigma F x = 0$ F₁ + 120sin30 - T = 0

T = 122.3538 N

Consider FBD of block B Applying conditions of equilibrium $\Sigma Fy = 0$ $N_2 - N_1 - 200\cos 30 = 0$ $N_2 = 277.1281 N$ $F_2 = 0.6 x 277.1281$ = 166.2769 N From (2) Applying conditions of equilibrium $\Sigma Fx = 0$

 $P - F_1 - F_2 + 200sin30 = 0$

P = 128.6307 N

Force required on block B to start the motion is 128.6307 N

Tension T in the cord parallel to inclined plane attached to A=122.3538 N

Q.6(c) Determine the required stiffness k so that the uniform 7 kg bar AC is in equilibrium when $\theta = 30^{\circ}$.

Due to the collar guide at B the spring remains vertical and is unstretched when $\theta = 0^{\circ}$. Use principle of virtual work. (4 marks)

Solution:

Given : : Mass of bar AC = 7 kg

 $\theta = 30^{\circ}$

To find : Required stiffness k

Solution:

Weight of rod = 7g N

Assume rod AC have a small virtual angular displacement $\delta \theta$ in anti-clockwise direction

Reaction forces $\mathbf{H}_{\!A}$ and $\mathbf{V}_{\!A}$ do not do any virtual work

Un-stretched length of the spring = BD

Extension of the spring $(x) = CD = 2\sin\theta$

Assume F_S be the spring force at end C of the rod

$F_S = Kx = 2Ksin \theta$

Assume A to be the origin and AD be the X-axis of the system

Active force	Co-ordinate of the point of	Virtual Displacement
	action along the force	
W=7g	-sin θ	δy M=-cos θ δ θ
FS=2Ksin θ	$-2\sin\theta$	$\delta yC'=-2\cos \theta \delta \theta$

APPLYING PRINCIPLE OF VIRTUAL WORK

 $\delta U = 0$

-W X δ_{YM} + F_s X $\delta_{YC'}$ + 50 X $\delta_{\theta} = 0$ 2Ksin θ x (-2cos θ δ_{θ}) = 7g x (-cos θ δ_{θ}) - 50 x δ_{θ}

Substituting the value of θ and solving

K=63.2025 Nm

The required stiffness K for bar AC to remain in equilibrium is 63.2025 Nm

Q.6(d) The system in figure is initially at rest.

Neglecting friction determine the force P required if the velocity of the collar is 5 m/s after 2 sec and corresponding tension in the cable. (4 marks)

Assume x_A and x_B be the displacements of block A and collar B respectively

Assume k_1, k_2 and k_3 be the lengths of the string which remain constant irrespective of the position of block A and block B

 $k_1+x_B+k_2+x_B+k_3+x_A=L \\$

 $\mathbf{x}_A = \mathbf{L} - \mathbf{k}_1 - \mathbf{k}_2 - \mathbf{k}_3 - 2\mathbf{x}_B$

Differentiating with respect to time

 $v_A = -2v_B$

Differentiating with respect to time one again

 $\mathbf{a}_{\mathbf{A}} = -2\mathbf{a}_{\mathbf{B}}$

Considering only magnitude

 $a_A = 2a_B$

 $a_A = 2 \ge 2.5$

 $= 5 \text{ m/s}^2 \dots (2) \text{ (From 1)}$

Weight of block $A(WA) = m_A g$

= 14.715 N

Assume T to be the tension in the string

Consider the vertical motion of block A

F.B.D of block A

$$\begin{split} \Sigma F y &= m_A a_A \\ T - W_A &= m_A a_A \\ T - 14.715 &= 1.5 \text{ x } 5 \end{split}$$

T = 22.215 N(3)

Consider the horizontal motion of collar B

F.B.D of collar B

 $\Sigma F x = m_B a_B$

 $P - 2T = m_B a_B$

P - 2x22.215 = 3x2.5

P = 51.93 N

Force P required = 51.93 N

Tension in the cable = 22.215 N