
Operating System

(May 2019)

Q-1

a. Define Operating System. Brief the Functions of OS. 5

 Definition: Operating System is an interface between user & the

 hardware. It is an

 Software used for communication between user and the hardware and

 also controls the

 execution of application programs. It is also called as “Resource

 Management”.

 Functions: Operating systems have various functions mentioned below

 1) Process management –

 * Creation, Execution & Deletion of user and system processes.

 * Control the execution of user’s application.

 * Scheduling of process.

 * Synchronization, inter-process communication and deadlock

 handling for processes.

 2) Memory management -

 * It allocates primary as well as secondary memory to the user and

 system and system process.

 * Reclaims the allocated memory from all the processes that have

 finished its execution.

 * Once used block become free, OS allocates it again to the processes.

 * Monitoring and keeping track of how much memory used by the

 process.

 3) File management -

 * Creation & Deletion of files and directories.

 * It allocates storage space to the files by using different file

 allocations methods.

 * It keeps back-up of files and offers the security for files.

 4) Device management -

 * Device drivers are open, closed and written by OS.

 * Keep an eye on device driver. communicate, control and monitor

 the device driver.

 5) Protection & Security -

 * The resources of the system are protected by the OS.

 * Keeps back-up of data.

 * Lock the system for security purpose by password.

b. Explain Shell. Explain use of chmod command in linux. 5

Shell

Shell is a system in which we can run our commands, programs, and shell

scripts, There are different flavours of a shell, just as there are different

flavour’s of operating systems. Each flavour of shell has its own set of

recognizable commands and functions.

Chmod

chmod – It change file mode bits.

- chmod changes the permissions of each given file according to given mode,

where the mode describes the permissions to modify. Mode can be specified

with octal numbers or with letters.

- In Linux, who can do what to a file or directory is controlled through sets of

permissions. There are three sets of permissions. One set for the owner of the

file, another set for the members of the file’s group, and a final set for everyone

else.

- In Linux operating systems, chmod is the command and system call which is

used to change the access permissions of file system .

- Classes of users are used to distinguish to whom the permissions giving. If no

classes are specified ‘all’ is implied. The classes are represented by one or more

of the following letters:

Reference Class Description

u user Owner of file

g group File group members

o others Not owner and not a member

of file system

a all All the three of above

commands

 c. Discuss various scheduling criteria. 5

 A number of scheduling algorithms are being designed that can be applied to

different processes having different properties. The scheduling criteria are

mentioned below.

 - CPU Utilization: It is amount of time CPU remains busy.

 - Throughput: Number of jobs processed per unit time.

 - Turnaround Time: Time elapsed between submission of jobs an

 completion of its execution.

 - Waiting Time: Processes waits in ready queue to get CPU. Sum of

 times spent In ready queues waiting time.

 - Time: Time from submission till the first response is

 produced.

 - Fairness: Every process should get fair share of the CPU time.

d. Explain the effect of page frame size on performance of page

 replacement algorithms. 5

 The number of frames is equal to the size of memory divided by the page-

size. So and increase in page size means a decrease in the number of

available frames.

 Having a fewer frames will increase the number of page faults because of

the lower freedom in replacement choice.

 Large pages would also waste space by Internal Fragmentation.

 On the other hand, a larger page-size would draw in more memory per

fault; so the number of fault may decrease if there is limited contention.

 Larger pages also reduce the number of TLB misses.

An important hardware design decision is the size of page to be used. There are

several factors to consider.

Internal fragmentation:

- Clearly, the smaller the page size, the lesser is the amount of internal

fragmentation. To optimize the use of main memory, we would like to

reduce internal fragmentation.

- On the other hand, smaller the page, the greater is the number of pages

required per process which could mean that some portion of page tables

of active processes must be in virtual memory, not in main memory. This

eventually leads to double page fault for a single reference of memory.

Rate at which page fault occurs:

- If the page size is very small, then ordinarily a large number of pages will

be available in main memory for process, which after some time will

contain portions of process near recent references leading to low page

fault rate.

- As the size of page is increased, each individual page will contain

locations further and further from any particular recent reference. Thus,

the effect of the principle of locality is weakened and the page fault rate

begins to rise.

- Eventually, however the page fault rate will begin to fall as the size of

page approaches the size of the entire process.

e. Explain Thrashing. 5

 -A process should have some minimum number of frames to support active

pages which are in memory.

- It helps to reduce the number of page faults. If these numbers of frames are not

available to the process then it will quickly page fault.

- To handle this page fault, it is necessary to replace the existing page from

memory.

- Since all the pages fault, it is necessary to replace the existing page from

memory.

-Since in paging, pages are transferred between main memory and disk, this has

an enormous overhead.

- Because of this frequent movement of pages between main memory and disk,

system throughput reduces.

- This frequent paging activity causing the reduction in system throughput

called as thrashing.

-Although many processes are in memory, due processes are in memory, due to

thrashing CPU utilization goes low.

- When operating system monitors this CPU utilization, it introduce new

process in memory to increase the degree of multiprogramming.

- Now it is needed that the existing pages should be replaced for the new

process.

-If global page replacement algorithm is used, it replaces the pages of other

process and allocates frames to this newly introduced process. So other

processes whose pages are replaced are also causes page faults.

- All these faulting processes go in wait state and waits for paging devices. In

this case again CPU utilization goes low.

-There is no actual work getting done and processes spend time only in paging.

-This thrashing can be limited by using local page replacement algorithm

instead of global page replacement algorithm.

Q-2

a. Differentiate between monolithic, layered and microkernel structure of

OS. 10

Monolithic Kernel Micro Kernel

1. If virtually entire operating

system code is executed in

kernel mode, then it is a

monolithic program that runs

in a single address space.

1. In microkernel, set of

modules for managing the

hardware is kept which can

uniformly well be executed in

user mode. A small

microkernel contains only code

that must execute in kernel

mode. It is the second part of

operating system.

2. There is same address space

for user mode as well as

kernel mode.

2. There is different address

space for user mode as well as

kernel mode.

3. It has a large space as

compared to micro kernel.

3. It has a small space as

compared to monolithic kernel.

4. Execution speed is faster

than micro kernel.

4. Execution speed is slower

than monolithic kernel.

5. If one service crashes whole

operating system fails.

5. If one service crashes whole

operating system do not fails, it

does not affect working of

other part micro kernel.

6. Kernel calls the function

directly for communication.

6. Communication is done

through message passing.

7. To write monolithic kernel

less code is required.

7. To write microkernel more

code is required.

8. It is hard to extend. 8. It is easily extendible.

9. Example: Linux, BSDs, etc. 9. Example: QNX, Symbian,

L4Linux, etc.

10. It is not flexible as

compared to microkernel.

10. It is more flexible.

11. kernel calls the function

directly.

11. In microkernel,

communication is through

message passing.

b. Describe the differences among short term, medium-term, and long

 term Scheduling. 10

Sr.

No

Long-term Scheduler Short-term scheduler Medium-term

Scheduler

1 Select processes from

the queue and loads

them into the memory

for execution.

Chose the process

from ready queue and

assign it to the CPU.

Swap in and out the

processes from

memory.

2 Speed is less than short

term scheduler.

Speed is very fast and

invoked frequently

than long term

scheduler.

Speed is in between

both the short term

and long term.

3 Transition of process

state from new to

ready.

Transition of process

state from ready to

executing.

No process state

transition

4 Not present in time

sharing system.

Minimal in time

sharing system.

Present in time

sharing system.

5 Supply a reasonable

mix of jobs, such as

I/O bound CPU bound.

Select new process to

allocate to CPU

frequently.

Processes are swapped

in and out for

balanced process mix.

6 It controls degree of

multiprogramming

It has control over

degree of

multiprogramming

Reduce the degree of

multiprogramming

7 It is also called as job

scheduler.

It is also called as CPU

scheduler.

Swapping scheduler

8 The decision to add to

the pool of processes

to be execute

The decision to add to

the number of

processes that are

partially or fully in

main memory.

The decision as to

which available

processes will be

executed by the

processor.

Q-3

a. Discuss how the following pairs of scheduling criteria conflict in certain

setting 10

a) CPU utilization and response time

b) Average Turnaround time and maximum waiting time

 CPU utilization and response time:

 CPU utilization is increased if the overhead associated with context

switching is minimized. - The context switching overheads could be

lowered by performing context switches infrequently.

 Average turnaround time and maximum waiting time:

 Average turnaround time is minimized by executing the shortest tasks

first.

 Such a scheduling policy could, however, starve long-running tasks and

thereby increase their waiting time.

 Average turnaround time and maximum waiting time SJF lower average

turnaround time.

I/O device utilization and CPU utilization: CPU utilization is maximized by

running long-running CPU-bound tasks without performing context switches,

I/O device utilization is maximized by scheduling I/O-bound jobs as soon as

they become ready to run, thereby incurring the overheads of context switches.

b. Consider the following snapshot of the system. Using Bankers

Algorithm, determine whether or not system is in safe state. If yes

determine the safe sequence. 10

Banker's Algorithm is a deadlock avoidance algorithm that checks for safe or

unsafe state of a System after allocating resources to a process.

When a new process enters into system ,it must declare maximum no. of

instances of each resource that it may need.After requesting operating system

run banker's algorithm to check whether after allocating requested

resources,system goes into deadlock state or not. If yes then it

will deny the request of resources made by process else it allocate resources to

that process.

No. of requested resources (instances of each resource) may not exceed no. of

available resources in operating system and when a process completes it must

release all the requested and already allocated resources.

 Allocation Max Available

 A B C D A B C D A B C D

P0 3 0 1 4 5 1 1 7 0 3 0 1

P1 2 2 1 0 3 2 1 1

P2 3 1 2 1 3 3 2 1

P3 0 5 1 0 4 6 1 2

P4 4 2 1 2 6 3 2 5

Need matrix is calculated by subtracting Allocation Matrix from the Max

matrix.

To check if system is in a safe state

P0 starts with available and proceed with the process P0

now available memory is 0301+3014=3315

Now P1 starts and P1 needs 1001

now available memory is 3315+1001=4316

now P2 starts and P2 needs 0200

now available memory is 4361+0200=4561

now p3 starts and P3 needs 4102

now available memory is 4561+4102= 8663

now P4 starts and P4 needs 2113

now available memory is 8663+2113= 10, 7, 7, 6

Available memory is 10A, 7B, 7C, 6D

The system is not in safe state

Q-4

a. Calculate number of page faults and page hits for the page replacement

policies FIFO, Optimal and LRU for given reference string 6, 0, 5, 2, 0, 3, 0,

4, 2, 3, 0, 3, 2, 5, 2, 0, 5, 6, 0, 5 (assuming three frame size). 10

 Frame Size =3

i) FIFO

Frame 6 0 5 2 0 3 0 4 2 3 0 3 2 5 2 0 5 6 0 5

0 6 6 6 2 2 2 2 4 4 4 0 0 0 0 0 0 0 6 6 6

Process Need(Max-Allocation)

A B C D

P0 2 1 0 3

P1 1 0 0 1

P2 0 2 0 0

P3 4 1 0 2

P4 2 1 1 3

1 0 0 0 0 3 3 3 2 2 2 2 2 5 5 5 5 5 0 0

2 5 5 5 5 0 0 0 3 3 3 3 3 2 2 2 2 2 5

PF Y Y Y Y - Y Y Y Y Y Y - - Y Y - - Y Y Y

ii) LRU

Frame 6 0 5 2 0 3 0 4 2 3 0 3 2 5 2 0 5 6 0 5

0 6 6 6 2 2 2 2 4 4 4 0 0 0 5 5 5 5 5 5 5

1 0 0 0 0 0 0 0 0 3 3 3 3 3 3 0 0 0 0 0

2 5 5 5 3 3 3 2 2 2 2 2 2 2 2 2 6 6 6

PF Y Y Y Y - Y - Y Y Y Y - - Y - Y - Y - -

iii) Optimal

Frame 6 0 5 2 0 3 0 4 2 3 0 3 2 5 2 0 5 6 0 5

0 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 6 6

1 0 0 0 0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0

2 5 5 5 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5

PF Y Y Y Y - Y - Y - - Y - - Y - - - Y - -

b. Explain synchronization problem in detail. How counting semaphore can

be used to solve readers writers problem. 10

 Synchronization: Process Synchronization is a sharing system resources

by processes in such a way that, Concurrent access to shared data is handled

thereby minimizing the chance of inconsistent data.

- Each process executes its own operations on shared variables sequentially, as

specified by its own program. Nevertheless, different processes may execute

their operations on the same shared variable concurrently. That is, operation

executions of different processes may overlap, and they may affect one

another.

- Each operation on a shared variable, when executed indivisibly, transforms

the variable from one consistent value to another. However, when the

operations arc executed concurrently on a shared variable, the consistency of

its values may not the guaranteed.

- The behaviours of operation executions on shared variables must, be

predictable for effective inter-process communication.

- Thus, operation executions on shared variables may need to be coordinated

to ensure their consistency semantics.

- Coordination of accesses to shared variables is called synchronization.

- A synchronization solution coordinates accesses from processes to shared

variables. where all accesses to shared variables are channeled through

access controllers

- The controllers do the coordination. Most operating systems implement a

few different synchronization schemes for process coordination purposes.

Each scheme supports a set of primitives. The primitives are used when it is

absolutely necessary to have orderly executions of operations on shared

variables in a particular manner.

- While defining the reader/writer’s problem, It is assumed that, many

processes only read the file(readers) and many write to the file(writers). File

is shared among a many number of processes. The conditions that must be

satisfied are as follows

1) Simultaneously reading of the file is allowed to many readers.

2) Writing to the file is allowed to only one writer at any given point of time.

3) Readers are not allowed to read the file while writer is writing to the file.

- in this solution, the first reader accesses the file by performing a down

operation on the semaphore file. Other readers only increment a counter,

read count. When readers finish the reading counter is decremented.

- when last one end by performing an up on the semaphore, permitting a

blocked writer, if there is one, to write. suppose that while a reader is reading

a file, another reader comes along. Since having two readers at the same time

is not a trouble, the second readers and later readers can also be allowed if

they come.

- After this assumes that a writer wants to perform a write operation on the

file. The writer can’t be allowed to write the file, since writer is suspended.

The writer will suspend until no reader is reading the file. If new reader

arrives continuously with short interval and perform reading, the writer will

never obtain the access to the file.

Algorithm

Writer process

While(TRUE)

{

Wait(w)

perform write operation

Signal(w)

}

Reader Process

While(TRUE)

{

Wait(m)

Read_count ++; //reader enters

If (Read_count == 1)

Wait(w) //blocks writer

Signal(m)

perform read operation

Wait(m)

Read_count - -;

If (Read_count == 0) //No reader

Signal(w) //Writer can write

Signal(m)

}

Q-5

a. Given memory partitions of 150k,500k,200k,300k,550k(in order) how

would each of the first fit, best fit and worst fit algorithm places the

processes of 220k,430k,110k,425k(in order).Evaluate, which algorithm

makes most efficient use of memory? 10

 - First Fit

- 220 K is put in 500 K partition.

- 430 K is put in 550 K partition.

- 110 K is put in 150 K partition.

- 425 K must wait.

- Best Fit

- 220 K is put in 300 K partition.

- 430 K is put in 500 K partition.

- 110 K is put in 150 K partition.

- 425 K is put in 550 K partition.

- Worst Fit

- 220 K is put in 550 K partition.

- 430 K is put in 500 K partition.

- 110 K is put in 330 K partition. (550 K – 220 K)

- 425 K must wait.

In this example, Best Fit turns out to be the best.

b. Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. The

drive is currently serving a request at cylinder 143, and the previous

request was at cylinder 125. The queue of pending requests in FIFO is

ordered as 80, 1470, 913, 1777, 948, 1022, 1750,130. What is the total

distance that the disk arm moves for following by applying following

algorithms? 10

1. FCFS 2. SSTF 3. LOOK 4. SCAN

1. FCFS: The FCFS schedule is

143, 80 1470, 913, 1777, 948, 1022, 1750, 130

It gives (143-80) =63, (1470-80)=1390, (1470-913)=557, (1777-913)=864,

(1777-948)=829, (1022-948)=74, (1750-1022)=728, (1750-80)=1670

Total head movements are:

63+1390+557+864+829+74+728+1670= 6125 Cylinders

2. SSTF: The SSTF schedule is

143, 130, 80, 913, 948, 1022, 1470, 1750, 1777.

It gives (143-130) = 13, (130-80) = 50, (913-80)= 833, (948-913)=35, (1022-

948)=74, (1470-1022)=448, (1750-1470)=280, (1777-1750)=27

Total head movements are:

13+50+833+35+74+448+280+27=1760 Cylinders

3. LOOK: The LOOK schedule is

143, 913, 948, 1022, 1470, 1750, 1777, 130, 80

It gives (913-143)=770, (948-913)=35, (1022-948)=74, (1470-1022)=448,

(1750-1470)=280, (1777-1750)= 27, (1777-130)=1647, (130-80)=47

Total head movements are:

770+35+74+448+280+27+1647+50=3331 Cylinders

4. SCAN: The SCAN schedule is

143, 913, 948, 1022, 1470, 1750, 1777, 4999, 130, 80.

It gives (913-143)=70, (948-913)=35, (1022-948)=74, (1470-1022)=448, (1750-

1470)=280, (1777-1750)=27, (4999-1777)=3222, (4999-130)=4869, (130-

80)=50

Total head movements are:

770+35+74+448+280+27+3222+4869+50 =9775 Cylinders

Q-6

 Write short notes on: (any two) 20

a. Linux Virtual File system

 The object oriented principle is used in Virtual File System (VFS).

- It has two modules: a set of definitions that states what file –system objects

are permissible to seems to be and software layer for these objects

manipulation.

- Following four major object types are defined by VFS:

1) I-node Object – An individual file is represented by I-node Object.

2) File Object – An open file is represented by file object.

3) Superblock Object – An entire file system is represented by a

Superblock Object.

4) Dentry Object – An individual directory entry is represented by

Dentry object.

- A set of operations are defined for each of the type of objects. Each object of

one of these points to a function table.

- The record of addresses of the actual functions is kept in function table.

These functions implement the defined set of operations for that object.

- The VFS software layer need not recognize earlier about what kind of object

it is dealing with. It can carry out an operation on one of the file-system

objects by invoking the right function from the object’s function table.

- The VFS remains unaware about whether an i-node represents a networked

file, a disk file, a network socket, or a directory file. The function table

contains suitable function to read the file.

- The VFS software layer will invoke that function without worrying about the

way of reading the data. The file can be accesses with the help of i-node and

file objects.

- An i-node object is a data structure that holds pointers to the disk blocks.

The actual file data is present on disk block.

- The file object denotes a point of access to the data in an open file. In order

to access the i-node contents, the process first has to access a file object

pointing to the i-node.

- The i-node objects do not belong to single process. Whereas file objects

belong to single process.

- The i-node object is cached by the VFS to get better performance in near

future access of the file. Therefore, although processes is not currently using

the file, its i-node is cached by VFS.

- All cached file data are linked onto list in the file’s i-node object. The i-node

also keeps standard information about each file, for example the owner, size,

and time most recently modified.

- Directory files are treated in a different way from other files.

- The programming interface of UNIX defines several operations on

directories, for example creation, deletion, and renaming of a file in a

directory.

- The system calls for these directory operations do not have need of the user

open the files concerned, unlike the case for reading or writing data.

- Therefore, these directory operations are defined by VFS in the i-node

object, instead of in the file object.

- The super block object represents files of entire file system.

- The operating system kernel keeps a single superblock object for each disk

device mounted as a file system and each networked file system at present

connected. The main duty of the superblock object is to offer access to i-

nodes.

- The VFS recognize each i-node by a unique file-system / i-node number

pair.

- It locates the i-node analogous to a particular i-node number by requesting

the superblock object to return the i-node with that number.

- A entry object represents a directory entry that may include the name of a

directory in the path name of a file (such as /usr) or the actual file.

b. Process State transition

 Process can have one of the following five states at a time.

1. New state: A process that just has been created but has not yet been

admitted to the pool of execution processes by the operating system.

Every new operation which is requested to the system is known as the

new born process.

2. Ready state: When the process is ready to execute but he is waiting

for the CPU to execute then this is called as the ready state. After

completion of the input and output the process will be on ready state

means the process will wait for the processor to execute.

3. Running state: The process that is currently being executed. When the

process is running under the CPU, or when the program is executed by

the CPU, then this is called as the running process and when a process is

running then this will also provide us some outputs on the screen.

4. Waiting or blocked state: A process that cannot execute until some

event occurs or an I/O completion. When a process is waiting for some

input and output operations then this is called as the waiting state and in

this process is not under the execution instead the process is stored out of

memory and when the user will provide the input and then this will again

be on ready state.

5. Terminated state: After the completion of the process, the process

will be automatically terminated by the CPU. So this is also called as the

terminated state of the process. After executing the complete process the

processor will also deallocate the memory which is allocated to the

process. So this is called as the terminated process.

c. System Calls

1) The interface between OS and user programs is defined by the set of system

calls that the operating system offers. System call is the call for the operating

system to perform some task on behalf of the user’s program. Therefore, system

calls make up the interface between processes and the operating system.

2) The system calls are functions used in the kernel itself. From programmer’s

point view, the system call is a normal C function call.

3) Due to system call, the code is executed in the kernel so that there must be a

mechanism to change the process mode from user mode to kernel mode.

 System call is categorized in five groups.

Sr.

No.

Group Examples

1 Process control End, abort, load, execute, create process, get

process attributes, set process attributes, wait

for time, wait event, allocate and free

memory.

2 Device Manipulation Request device, release device, read, write,

reposition, get device attributes, set device

attributes, logically attach or detach devices.

3 Communications Create, delete communication connection,

send, receive message, transfer status

information, attach or detach devices.

4 File Manipulation Create file, delete file, open, close, read,

write, reposition, get file attributes, set file

attributes.

5 Information

Maintenance

Get time or date, set time or date, get system

data, set system data, get process, file, or

device attributes, set process, file or device

attributes.

Some examples of System Calls

Open() A program initializes access to a file in a file system using the open

system call.

Read() A program that needs to access data from a file stored in a file

system uses the read system call.

Write() It writes data from a buffer declared by the user to a given device,

maybe a file. This is primary way to output data from a program by

directly using a system call.

Exec() exec is a functionality of an operating system that runs an executable

file in the context of an already existing process, replacing the

previous executable

Fork() fork is an operation whereby a process creates a copy of itself. Fork

is the primary method of process creation on Unix-like operating

systems.

