
Operating System

(May 2018)

Q.1. a) Explain the difference between monolithic and micro kernel 5M

 

 b) What is Mutual Exclusion? Explain its Significance. 5M

  At the same time as one processor executes the shared variable, all remaining processes

 wishing to accomplish so at the same instant should be kept waiting; when that process

 has over executing the shared variable, one of the processes waiting to perform so should

 be permitted to carry on. In this manner, each process executing the shared variable keep

 outs all others from doing so at the same time. Only one process should be allowed to

 execute in critical section. This is called as Mutual Exclusion.

Monolithic Kernel Micro Kernel

1. If virtually entire operating
system code is executed in kernel
mode, then it is a monolithic
program that runs in a single
address space.

1. In microkernel, set of modules for
managing the hardware is kept
which can uniformly well be
executed in user mode. A small
microkernel contains only code that
must execute in kernel mode. It is
the second part of operating system.

2. There is same address space for
user mode as well as kernel mode.

2. There is different address space
for user mode as well as kernel
mode.

3. It has a large space as
compared to micro kernel.

3. It has a small space as compared
to monolithic kernel.

4. Execution speed is faster than
micro kernel.

4. Execution speed is slower than
monolithic kernel.

5. If one service crashes whole
operating system fails.

5. If one service crashes whole
operating system do not fails, it
does not affect working of other part
micro kernel.

6. Kernel calls the function directly
for communication.

6. Communication is done through
message passing.

 Significance:

 1) It avoids Race around condition.

 2) Prevents multiple threads to enter critical section at the same time.

 c) Discuss various Scheduling Criteria. 5M

  A number of scheduling algorithms are being designed that can be applied to different

 processes having different properties. The scheduling criteria are mentioned below.

 * CPU Utilization – It is amount of time CPU remains busy.

 * Throughput – Number of jobs processed per unit time.

 * Turnaround Time – Time elapsed between submission of jobs and completion of its

 execution.

 * Waiting Time – Processes waits in ready queue to get CPU. Sum of times spent In ready

 queues waiting time.

 * Response Time – Time from submission till the first response is produced.

 * Fairness – Every process should get fair share of the CPU time.

 d) Explain various file allocation techniques. 5M

  Files are usually stored on secondary storage devices such as disk. These files are then

 called back when needed. As part of their implementation, files must be stored in the hard

 disk. This has to be done in such a way that the disk space is utilized effectively and the

 files can be accessed quickly. There are following methods used majority in different

 operating system:

 Contiguous allocation

 Linked List allocation

 Linked List allocation using a table in memory.

 Indexed allocation

 I-nodes

1) Contiguous Allocation: Each file takes up a set of contiguous blocks on the disk. Disk

address defines a linear ordering on the disk. If each block size on disk is 2 KB, then 30

KB file would be allocated 15 consecutive blocks. The directory entry for each file

specifies the address of the starting block and the total number of blocks allocated for

this file. Directory entry is shown below. File A starts at block 0 and it is 3 block long

occupying block 0.

 Advantage:

 • Contiguous allocation is easy to implement.

 Disadvantage:

 • When allocated file is deleted, continuously allocated blocks to the file become free.

2) Linked List Allocation: This overcomes the disadvantage of contiguous allocation. In

linked list allocation, each file is linked list of disk block. The scattered disk on the disk

can be allocated to the file. The directory contains a pointer to the first and the last block.

Below figure shows thee linked list allocation for file Pics. The file pics of 5 blocks starts

at block 2 and continue 13, then block 18, then block 12, and finally block 7.

 Advantage:

 • Reading file sequentially is simple.

 Disadvantage:

 • In each block pointer takes some space, so each file requires slightly more disk space

 rather than its actual size.

3) Linked List allocation using table in memory: Each block needs to store pointer

information; therefore, entire block is not fully used to store file content. This limitation

can be overcome by keeping pointer information in table which always remains in

memory. Refer Linked list fig for Table.

Physical Next block

0 2
(File Pics

Starts from
here)

1 13

2 18

3 12

 Advantage:

 • Random access is much easier

 Disadvantage:

 • Whole table must be in memory all the time to make it work.

4) Indexed allocation: With file allocation table in memory, Linked list allocation support

random access, but this entire table must be in memory all the time. In indexed

allocation, all the pointers are kept in one location called as index block. There is an

index block assigned to each file and this index block holds the disk block addresses of

that particular file.

 Advantage:

 • Indexed allocation supports random access.

 Disadvantage:

 • The pointer overhead of index block is more with compare to the pointer overhead of

 linked allocation.

5) I-nodes: I-Nodes (Index Nodes) Is the data structure which records the attributes and

disk addresses of the files blocks. I-nodes is associated with each file and it keeps track

of which block belongs to which file. If particular file is open, only its i-node to be in

memory. This is more beneficial with compare to linked list allocation which requires

entire file allocation table in memory. The size of file allocation table is proportional to the

number of blocks that disk contains.

File Attributes 

Address of disk block 0 

Address of disk block 1 

Address of disk block 2 

Address of disk block 3 

Address of block of
pointers

 Disk Block Containing
additional disk address

 e) Explain the disk cache. 5M

  1) In main memory, a buffer is reserved for disk sectors called as cache.

 2) The cache keeps copy of data in some of the sectors on the disk.

 3) To fulfill an I/O request for a particular sector, first disk cache is checked to see

 whether the sector is in disk cache.

 4) If it is present, then request is fulfilled via the cache.

 5) If not present, then required sector is read into the disk cache from the disk.

 6) The disk cache improves the performance as some request is satisfied from it.

 7) The property of locality of reference is used.

 8) When a block of data is present in cache to fulfill a single I/O request, it is expected

 that same block will be needed in future.

 __

Q.2. a) What is operating System? Explain various functions and objectives. 10M

  Definition: Operating System is an interface between user & the hardware. It is an

 Software used for communication between user and the hardware and also controls the

 execution of application programs. It is also called as “Resource Management”.

 Functions: Operating systems have various functions mentioned below

 1) Process management –

 * Creation, Execution & Deletion of user and system processes.

 * Control the execution of user’s application.

 * Scheduling of process.

 * Synchronization, inter-process communication and deadlock handling for processes.

 2) Memory management -

 * It allocates primary as well as secondary memory to the user and system and

 system process.

 * Reclaims the allocated memory from all the processes that have finished its

 execution.

 * Once used block become free, OS allocates it again to the processes.

 * Monitoring and keeping track of how much memory used by the process.

 3) File management -

 * Creation & Deletion of files and directories.

 * It allocates storage space to the files by using different file allocations methods.

 * It keeps back-up of files and offers the security for files.

 4) Device management -

 * Device drivers are open, closed and written by OS.

 * Keep an eye on device driver. communicate, control and monitor the device driver.

 5) Protection & Security -

 * The resources of the system are protected by the OS.

 * Keeps back-up of data.

 * Lock the system for security purpose by password.

 Objectives: There are three objectives of operating system.

 * Convenient – Because pf operating system it is very convenient to use computers.

 * Efficiency – Because of operating system efficiency of computer increases. We can

 work efficiently. We can use resource efficiently.

 * Ability to Evolve – If we add more modules in our computers then also our computer

 works It does not get damage.

 b) What is deadlock? Explain the necessary and sufficient condition for deadlock.

What is the difference between deadlock avoidance and prevention? 10M

  Deadlock:

 * We know that processes need different resources in order to complete the execution.

 * So in a multiprogramming environment, many processes may compete for a multiple

 Number of resources.

 * In a system, resources are finite. So with finite number of resources, it is not possible to

 fulfill the resource request of all processes.

 * When a process requests a resource and if the resource is not available at that time. The

 process enters a wait state. In multiprogramming environment, it may happen with many

 processes.

 * There is chance that waiting processes will remain in same state and will never again

 change state.

 * It is because the resource they have requested are held by other waiting processes.

 When such type of situation occurs then it is called as Deadlock.

 The necessary and sufficient conditions for deadlock to occur are:

 Mutual Exclusion

o A resource at a time can only be used by one process.

o If another process is requesting for the same resource, then it must be delayed

until that resource is released.

 Hold and Wait

o A process is holding a resource and waiting to acquire additional resources that

are currently being held by other processes.

 No Pre-emption:

o Resources cannot be pre-empted

o Resource can be released only by the process currently holding it based on its

voluntary decision after completing the task

 Circular wait:

o A set of processes { P1,….,Pn-1,Pn } such that the process P1 is waiting for

resource held by P2,P2 is waiting for P3 ,and Pn is waiting for P1 to release its

resources.

o Every process holds a resource needed by the next process.

 All the four above mentioned conditions should occur for a deadlock to occurs.

Deadlock Avoidance Deadlock Prevention

 The system dynamically considers

every request and decides whether it is

safe to grant it at this point.

 Deadlock Avoidance Techniques:

A deadlock avoidance algorithm

dynamically examines the resource

allocation state to ensure that a

circular wait condition can never

exist. The resource allocation state is

defined by the number of available

and allocated resources, and the

maximum demand of the process.

There are two algorithms:

1) Resource allocation graph.

2) Banker’s algorithm.

 Preventing deadlock by constraining how

requests for resources can be made in

system and how they are handled.

 Deadlock prevention Techniques:

 Mutual Exclusion  this condition is

 needed to be checked for non-

 sharable resources (e.g. Printer)

Hold and Wait  It requires a process

to request a resource and get

allocated before execution or allow

process to request resources when

the process has none.

No preemption  If a process that is

holding some resources requests

another resource that cannot be

immediately allocated to it, then all

 The goal is to ensure that the resource

which are allocated to the process

should be in safe state to avoid

deadlock.

 A major drawback of this method is that

it is difficult to know at the beginning

itself of the maximum resource

required.

resources currently being held are

released

Circular Waitwe can impose a total

ordering of all resource types, and ask

that each process requests resources

in an increasing order of enumeration.

 The goal is to ensure that at least one of

the above mentioned conditions for

deadlock can never hold.

 Disadvantage is that it can lead to low

device utilization and reduced system

throughput.

Q.3. a) Explain the following in brief: 10 M

 i) Process Synchronization – Process Synchronization means sharing system

 resources by processes in such a way that, Concurrent access to shared data is

 handled thereby minimizing the chance of inconsistent data.

 Each process executes its own operations on shared variables sequentially, as

specified by its own program. Nevertheless, different processes may execute their
operations on the same shared variable concurrently. That is, operation executions
of different processes may overlap, and they may affect one another.

 Each operation on a shared variable, when executed indivisibly, transforms the
variable from one consistent value to another. However, when the operations arc
executed concurrently on a shared variable, the consistency of its values may not the
guaranteed.

 The behaviors of operation executions on shared variables must, be predictable for
effective inter-process communication.

 Thus, operation executions on shared variables may need to be coordinated to
ensure their consistency semantics.

 Coordination of accesses to shared variables is called synchronization.

 A synchronization solution coordinates accesses from processes to shared variables.
where all accesses to shared variables are channeled through access controllers

 The controllers do the coordination. Most operating systems implement a few
different synchronization schemes for process coordination purposes. Each scheme

supports a set of primitives. The primitives are used when it is absolutely necessary
to have orderly executions of operations on shared variables in a particular manner.

 ii) Inter-Process Communication –

 * Synchronization and communication are two basic requirements should be satisfied
 When processes communicate with each other.
 * Synchronization of processes is required to achieve the mutual exclusion.
 * Independent processes do not communicate with each other but cooperating processes
 may need to exchange information. Cooperative processes either communicates
 through shared memory or message passing.
 * Cooperating processes require an inter process communication (IPC) mechanism that
 will allow them to exchange data and information.
 * There are two fundamental models of inter process communication.

 1) Shared Memory
 - In the shared memory model, a region of memory that is shared by cooperating
 processes are established.
 - Processes can then exchange information by reading and writing data to the shared
 region.
 - In the message passing model, communication takes place by means of message
 exchanged between the cooperating process.

 2) Message Passing
 - Following are the two primitives used in message passing:
 Send (destination, message)
 Receive (Source. message)
 - This is the minimum two operations required for processes to send and receive the
 message.
 - A process sends data in the form of a message to another process indicated by
 destination.
 - A process receive data by executing the received primitives, indicating the source and
 the message.

 b) Consider the following set of processes, assuming all are arriving at time 0. 10M

 Calculate average waiting time and turn-around time for FCFS, SJF

 (Non-pre-emptive), Priority and RR (Quantum=2).

 1) FCFS – Mode- Non-Pre-emptive

 Criteria- Arrival Time

Process Burst time Priority

P1 2 2

P2 1 1

P3 8 4

P4 4 5

P5 5 3

 0 2 3 11 15 20

 ATAT =
2+3+11+15+20

5
 = 10.2

 AWT =
0+2+3+11+15

5
 = 6.2

2) SJF (Non-Pre-emptive) – Mode - Non-Pre-emptive

 Criteria – Burst Time.

P2 P1 P4 P5 P3

 0 1 3 7 12 20

process Arrival
Time
(AT)

Burst
time (BT)

Completion
Time (CT)

Turn Around
Time (TAT)

(TAT=CT-AT)

Waiting Time
(WT)

(WT=TAT-BT)

P1 0 2 3 3 1
P2 0 1 1 1 0
P3 0 8 20 20 12
P4 0 4 7 7 3
P5 0 5 12 12 7

 ATAT =
3+1+20+7+12

5
 = 8.6

 AWT =
1+0+12+3+7

5
 = 4.6

 3) Priority – Mode – Non-Pre-emptive (Solution for Pre-emptive will be same for this problem

 Criteria- Priority as arrival time is same or 0)

 0 1 3 8 16 20

P1 P2 P3 P4 P5

process Arrival
Time (AT)

Burst
time (BT)

Completion Time
(CT)

Turn Around
Time (TAT)

(TAT=CT-AT)

Waiting Time
(WT)

(WT=TAT-BT)

P1 0 2 2 2 0

P2 0 1 3 3 2

P3 0 8 11 11 3

P4 0 4 15 15 11

P5 0 5 20 20 15

P2 P1 P5 P3 P4

 ATAT =
3+1+16+20+8

5
 = 9.6

 AWT =
1+0+8+16+3

5
 = 5.6

 4) RR(Quantum=2) – Mode – Pre-emptive

 Criteria – Arrival time

 Queue:

P1 P2 P3 P4 P5 P3 P4 P5 P3 P5 P3

 0 2 3 5 7 9 11 13 15 17 18 20

process Arrival
Time
(AT)

Burst
time
(BT)

Completion
Time (CT)

Turn
Around
Time
(TAT)

(TAT=CT-
AT)

Waiting
Time
(WT)

(WT=TAT-
BT)

P1 0 2 2 2 0

P2 0 1 3 3 2

P3 0 8 20 20 12

P4 0 4 13 13 9

P5 0 5 18 18 13

 ATAT =
2+3+20+13+18

5
 = 11.2

 AWT =
0+2+12+9+13

5
 = 7.2

__

Q.4. a) What is paging? Explain LRU, FIFO and Optimal page replacement policy for the

 following String. Page frame size is 4.

 1,2,3,4,5,3,4,1,6,7,8,7,8,9,7,8,9,5,4,5,4,2. 10M

  Paging:

 1. The date required by the application is brought from external memory to the main

 memory in form of blocks(pages) This process is called as Paging.

process Arrival
Time
(AT)

Burst
time
(BT)

Priority Completion
Time (CT)

Turn Around
Time (TAT)

(TAT=CT-AT)

Waiting Time
(WT)

(WT=TAT-BT)

P1 0 2 2 3 3 1

P2 0 1 1 1 1 0

P3 0 8 4 16 16 8

P4 0 4 5 20 20 16

P5 0 5 3 8 8 3

P1 P2 P3 P4 P5 P3 P4 P5 P3 P5 P3

 2. Paging is a memory management scheme which allows the physical address of a

 process to be non-contiguous.

 3. Paging concept is used to remove the problem fragmentation. Here we are able to

 allocate physical memory to the process in non-contiguous manner wherever memory

 is available.

 4. Paging avoids external fragmentation and need for compaction.

 There are three types of page replacement policies explained below:

1) FIFO- In this page replacement policy the page which has arrived first is removed first.

Example:

1 2 3 4 5 3 4 1 6 7 8 7 8 9 7 8 9 5 4 5 4 2

1 1 1 1 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 2

 2 2 2 2 2 2 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9

 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 5 5 5 5 5

 4 4 4 4 4 4 7 7 7 7 7 7 7 7 7 4 4 4 4

M M M M M H H M M M M H H M H H H M M H H M

Page Hit = 9 Page Hit ratio =
9

22
 * 100 = 40.90%

Page Miss = 13 Page Miss ratio =
13

22
 * 100 = 59.10%

 Advantage – Easy to implement

 Disadvantage – Performance is not always good. It may suffers from

 belady’s anomaly.

2) LRU- In this page replacement policy we replace that page that was used farthest

back in past.

Example:

1 2 3 4 5 3 4 1 6 7 8 7 8 9 7 8 9 5 4 5 4 2

1* 1 1 1 5* 5 5 5 6* 6 6 6 6 6 6 6 6 5* 5 5* 5 5

 2* 2 2 2 2 2 1* 1 1 1 1 1 9* 9 9 9* 9 9 9 9 9

 3* 3 3 3* 3 3 3 7* 7 7* 7 7 7* 7 7 7 4* 4 4* 4

 4* 4 4 4* 4 4 4 8* 8 8* 8 8 8* 8 8 8 8 8 2*
M M M M M H H M M M M H H M H H H M M H H M

Page Hit = 9 Page Hit ratio =
9

22
 * 100 = 40.90%

Page Miss = 13 Page Miss ratio =
13

22
 * 100 = 59.10%

3) Optimal- In this page replacement policy we replace that page which will not be used

for the longest period of time. Here we see future of that Page. If it will be used in

future, then we won’t replace it.

Example:

1 2 3 4 5 3 4 1 6 7 8 7 8 9 7 8 9 5 4 5 4 2

1 1 1 1 1 1 1 1 6 6 6 6 6 9 9 9 9 9 4 4 4 4

 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7

 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 2

M M M M M H H H M M M H H M H H H H M H H M

Page Hit = 11 Page Hit ratio =
11

22
 * 100 = 50%

Page Miss = 11 Page Miss ratio =
11

22
 * 100 = 50%

 b) Explain Banker’s algorithm in detail 10M

  Banker’s algorithm is a deadlock avoidance algorithm. It is applicable to the resource

 allocation system with multiple instance of each resource type.

 * It is less efficient than resource allocation graph algorithm.

 * Newly entered process should declare maximum number of instance of each

 resource type which it may require.

 * The request should not be more than total number of resource in the system.

 * System checks if allocation of requested resource will leave the system in safe state.

 If it will the requested resources are allocated.

 * If system determines that resources cannot be allocated as it will go in unsafe state,

 the requesting process should wait until other process free the resource.

 Following Data Structure is used in Banker’s algorithm:

 - A[m]: Array A of size m shows the number of available resources.

 - Max[n][m]: A 2-D matrix where each process stores the maximum demand of

 resource.
 - Allocation [n][m]: A 2-D matrix which stores the current allocation status of all

 resource types to various process in the system.

 - Need [n][m]: A 2-D matrix which tells the current remaining resource need of each
 process. It is the maximum demand of a process and the current
 allocation status.

 Algorithm:
 Let process Pi  Request i
 Step1: if Request i ≤ Need
 Go to step2 else error
 Step2: if Request i ≤ Available
 Go to step3 else wait
 Step3: Available i = Available i – Request i
 Allocation i = Allocation i + Request i
 Need i = Need i – Request i
 Step4: Check if new state is in safe state or not.

 Safety Algorithm
 Step1: Work = Available.
 Finish(i) = false
 Step2: find an i such that finish[i]=false and need i ≤ work.
 If no such i, go to step4
 Step3: finish[i] = true
 Work = work + allocation.
 Go to step2
 Step4: If finish[i] = True for all i
 Then system is safe

Q.5. a) What is system call? Explain any five system call in details. 10M

  1) The interface between OS and user programs is defined by the set of system calls
 that the operating system offers. System call is the call for the operating system to
 perform some task on behalf of the user’s program. Therefore, system calls make
 up the interface between processes and the operating system.
 2) The system calls are functions used in the kernel itself. From programmer’s point view,
 the system call is a normal C function call.

 3) Due to system call, the code is executed in the kernel so that there must be a
 mechanism to change the process mode from user mode to kernel mode.

 System call is categorized in five groups.

Sr.
No.

Group Examples

1 Process control End, abort, load, execute, create process, get
process attributes, set process attributes, wait for
time, wait event, allocate and free memory.

2 Device Manipulation Request device, release device, read, write,
reposition, get device attributes, set device
attributes, logically attach or detach devices.

3 Communications Create, delete communication connection, send,
receive message, transfer status information, attach
or detach devices.

4 File Manipulation Create file, delete file, open, close, read, write,
reposition, get file attributes, set file attributes.

5 Information Maintenance Get time or date, set time or date, get system data,
set system data, get process, file, or device
attributes, set process, file or device attributes.

 Some examples of System Calls

Open() A program initializes access to a file in a file system using the open system call.

Read() A program that needs to access data from a file stored in a file system uses the
read system call.

Write() It writes data from a buffer declared by the user to a given device, maybe a file.
This is primary way to output data from a program by directly using a system
call.

Exec() exec is a functionality of an operating system that runs an executable file in the
context of an already existing process, replacing the previous executable

Fork() fork is an operation whereby a process creates a copy of itself. Fork is the
primary method of process creation on Unix-like operating systems.

 b) Explain paging hardware with TLB along with protection bits in page table. 10M

  The (Translation look aside buffer) TLB is similar to the page table. Important or most
 used pages are stored in TLB. First pages are searched in TLB if page is found then it
 proceeds further else it searches pages in page table. TLB reduce execution time. TLB is
 a piece of very fast, associative memory, capable of searching many areas of memory
 simultaneously. This means that many table entries can be searched at the same time
 for a logical-page entry. This type of memory is very expensive which means that not
 much of it is used; Memory Management Unit (MMUs) usually use TLBs with between 64
 and 1024 entries.

 A new page table causes all the entries stored in the TLB to become useless. When a
new page table is used for example, on a context switch the TLB entries must be erased
to make sure the new process's logical-address space maps to the old process's
physical-address space.

 Protection bits

o With all the paging and replacement that goes on, it might be easy to forget that
there needs to be protective barriers thrown up around memory pages.

o We need to prevent code from straying beyond the boundaries of its pages. Our
scheme must embrace the swapping and paging ideas we have developed.
Protection in a paged environment mug focus on physical-memory frames. Since
every memory reference goes through the page table to reference frames, we
can add protection bits for frames and store them in the page table. These bits
can give certain properties for frames: read-only or read-write.

0 4 Valid

1 Invalid

2 6 Valid

3 Invalid

4 Invalid

5 9 Valid

6 invalid

o For further protection, we can add an execute bit. To support paging, we can add
a valid-invalid bit, which indicates if the page being accessed is actually in
memory. Note that these protection schemes are focused on the page table.
Property bits are the easiest way to provide protection.

o When logical-to-physical translation is taking place, the nature and owner of the
request is also analyzed.

 If the process that issues the address is not the process that owns the page or if the
requested operation is something that is not permitted by the access bits, the attempt is
ruled illegal and the operating system is notified. The valid-invalid bit is set when paging
occurs. If the bit is set to invalid, this means the page has been swapped to virtual
memory and a page fault should be triggered.

__

Q.6. Write short notes on (any two) 20M

 a) Linux Virtual file system.

  The object oriented principle is used in Virtual File System (VFS).
- It has two modules: a set of definitions that states what file –system objects are permissible

to seems to be and software layer for these objects manipulation.
- Following four major object types are defined by VFS:

1) I-node Object – An individual file is represented by I-node Object.
2) File Object – An open file is represented by file object.
3) Superblock Object – An entire file system is represented by a Superblock Object.
4) Dentry Object – An individual directory entry is represented by Dentry object.

- A set of operations are defined for each of the type of objects. Each object of one of these
points to a function table.

- The record of addresses of the actual functions is kept in function table. These functions
implement the defined set of operations for that object.

- The VFS software layer need not recognize earlier about what kind of object it is dealing
with. It can carry out an operation on one of the file-system objects by invoking the right
function from the object’s function table.

- The VFS remains unaware about whether an i-node represents a networked file, a disk file,
a network socket, or a directory file. The function table contains suitable function to read the
file.

- The VFS software layer will invoke that function without worrying about the way of reading
the data. The file can be accesses with the help of i-node and file objects.

- An i-node object is a data structure that holds pointers to the disk blocks. The actual file data
is present on disk block.

- The file object denotes a point of access to the data in an open file. In order to access the i-
node contents, the process first has to access a file object pointing to the i-node.

- The i-node objects do not belong to single process. Whereas file objects belong to single
process.

- The i-node object is cached by the VFS to get better performance in near future access of
the file. Therefore, although processes is not currently using the file, its i-node is cached by
VFS.

- All cached file data are linked onto list in the file’s i-node object. The i-node also keeps
standard information about each file, for example the owner, size, and time most recently
modified.

- Directory files are treated in a different way from other files.
- The programming interface of UNIX defines several operations on directories, for example

creation, deletion, and renaming of a file in a directory.
- The system calls for these directory operations do not have need of the user open the files

concerned, unlike the case for reading or writing data.
- Therefore, these directory operations are defined by VFS in the i-node object, instead of in

the file object.
- The super block object represents files of entire file system.
- The operating system kernel keeps a single superblock object for each disk device mounted

as a file system and each networked file system at present connected. The main duty of the
superblock object is to offer access to i-nodes.

- The VFS recognize each i-node by a unique file-system / i-node number pair.
- It locates the i-node analogous to a particular i-node number by requesting the superblock

object to return the i-node with that number.
- A entry object represents a directory entry that may include the name of a directory in the

path name of a file (such as /usr) or the actual file.

 b) Process Control Block

  Process Control Block (PCB) is the data structure used by the operating system to keep
 track on the processes. Any process is identified by its PCB.
 - All the information associated with process is kept in PCB. There is separate PCB for
 each process.
 - Traffic controller module keeps a track on the status of the processes. PCB’s of the
 processes which are in the same state (ready, waiting, executing, etc) are linked
 together giving a specific name to the list such as ready list.
 - If may processes wait for the device, the PCB’s of all these processes are linked together
 in chain waiting for that device.
 - If the processes are available in that device chain, then again it is placed back to ready
 state to request that device again.

Pointer Current State

Process ID

Priority

Program counter

Registers

Event information

List of open files

 .
 .
 .
 .
 .

 Process Control Block

a) Pointer: This field points to other process PCB. The scheduling list is maintained by
pointer.

b) Current State: Currently process can be in any of the state from new, ready, executing,

waiting, etc.
c) Process ID: Identification number of the process. Operating system assign this number

to process to distinguish it from other processes.
d) Priority: Different process can have different priority. Priority field indicate the priority of

the process.
e) Program Counter: The counter indicates the address of the next instruction to be

executed for this process.
f) Registers: The registers vary in number and type, depending on the computer

architecture. They include accumulators, index registers, stack pointers and general
purpose registers, plus any condition code information.

g) Event Information: For a process in the blocked state this field contains information

concerning the event for which the process is waiting.
h) List of Open Files: Files opening, reading, writing, closing is done by the process.

 After creation of process, hardware registers and flags are set as per the details supplied by
loaders or linkers. At any time, the process is blocked, the processor register’s content are
generally placed on the stack and the pointer to the respective stack frame is stored in the PCB.
In this fashion, the hardware state can be restored when the process is scheduled and resume
execution again.

 c) Reader and Writer problem using semaphore.

 While defining the reader/writer’s problem, It is assumed that, many processes only read the
file(readers) and many write to the file(writers). File is shared among a many number of
processes. The conditions that must be satisfied are as follows

1) Simultaneously reading of the file is allowed to many readers.
2) Writing to the file is allowed to only one writer at any given point of time.
3) Readers are not allowed to read the file while writer is writing to the file.

- in this solution, the first reader accesses the file by performing a down operation on the
semaphore file. Other readers only increment a counter, read count. When readers finish
the reading counter is decremented.

- when last one end by performing an up on the semaphore, permitting a blocked writer, if
there is one, to write. suppose that while a reader is reading a file, another reader comes

along. Since having two readers at the same time is not a trouble, the second readers and
later readers can also be allowed if they come.

- After this assumes that a writer wants to perform a write operation on the file. The writer
can’t be allowed to write the file, since writer is suspended. The writer will suspend until no
reader is reading the file. If new reader arrives continuously with short interval and perform
reading, the writer will never obtain the access to the file.

- To stop this circumstance, the program is written in a different way: when a reader comes
and at the same time a writer is waiting, the reader is suspended instead of being allowed
immediately.

- Now writer will wait for readers that were reading and about to finish but does not have to
wait for readers that came along with him. The drawback of this solution is that it achieves
less concurrency and thus lower performance.

Algorithm

 Writer process

While(TRUE)
 {
Wait(w)
 # perform write operation
Signal(w)
 }

 Reader Process

 While(TRUE)
 {
 Wait(m)
 Read_count ++; //reader enters
 If (Read_count == 1)
 Wait(w) //blocks writer
 Signal(m)
 # perform read operation
 Wait(m)
 Read_count - -;
 If (Read_count == 0) //No reader
 Signal(w) //Writer can write
 Signal(m)
 }

d) Explain disk scheduling algorithms.

 In operating systems, seek time is very important. Since all device requests are linked in

queues, the seek time is increased causing the system to slow down. Disk Scheduling
Algorithms are used to reduce the total seek time of any request.

 TYPES OF DISK SCHEDULING ALGORITHMS

1) First Come-First Serve (FCFS)

2) Shortest Seek Time First (SSTF)

3) Elevator (SCAN)

4) Circular SCAN (C-SCAN)

5) LOOK

6) C-LOOK

 Given the following queue -- 95, 180, 34, 119, 11, 123, 62, 64 with the Read-write head
initially at the track 50 and the tail track being at 199 let us now discuss the different
algorithms.

1. First Come -First Serve (FCFS):

All incoming requests are placed at the end of the queue. Whatever number that is next
in the queue will be the next number served. Using this algorithm doesn't provide the
best results. To determine the number of head movements you would simply find the
number of tracks it took to move from one request to the next. For this case it went from
50 to 95 to 180 and so on. From 50 to 95 it moved 45 tracks. If you tally up the total
number of tracks, you will find how many tracks it had to go through before finishing the
entire request. In this example, it had a total head movement of 640 tracks. The
disadvantage of this algorithm is noted by the oscillation from track 50 to track 180 and
then back to track 11 to 123 then to 64. As you will soon see, this is the worse algorithm
that one can use.

Total head moment = (95-50)+(180-95)+(180-34)+(119-34)+(119-11)+(123-11)+(123-
62)+(64-62) = 644

2. Shortest Seek Time First (SSTF):

In this case request is serviced according to next shortest distance. Starting at 50, the
next shortest distance would be 62 instead of 34 since it is only 12 tracks away from 62
and 16 tracks away from 34. The process would continue until all the process are taken
care of. For example, the next case would be to move from 62 to 64 instead of 34 since
there are only 2 tracks between them and not 18 if it were to go the other way. Although
this seems to be a better service being that it moved a total of 236 tracks, this is not an
optimal one. There is a great chance that starvation would take place. The reason for

this is if there were a lot of requests close to each other the other requests will never be
handled since the distance will always be greater.

Total head moment = (62-50)+(64-62)+(64-34)+(34-11)+(95-64)+(119-95)+(123-
119)+(180-123) = 238

3. Elevator (SCAN):

This approach works like an elevator does. It scans down towards the nearest end and
then when it hits the bottom it scans up servicing the requests that it didn't get going
down. If a request comes in after it has been scanned it will not be serviced until the
process comes back down or moves back up. This process moved a total of 230 tracks.
Once again this is more optimal than the previous algorithm, but it is not the best.

 Total head moment = (50-34)+(34-11)+(11-0)+(62-0)+(64-62)+(95-64)+(119-95)+(123-
119)+(180-123) = 230

4. Circular Scan (C-SCAN)

Circular scanning works just like the elevator to some extent. It begins its scan toward
the nearest end and works it way all the way to the end of the system. Once it hits the
bottom or top it jumps to the other end and moves in the same direction. Keep in mind
that the huge jump doesn't count as a head movement. The total head movement for this
algorithm is only 187 tracks, but still this isn't the more sufficient.

Total head moment = (50-34)+(34-11)+(11-0)+(199-0)+(199-180)+(180-123)+(123-
119)+(119-95)+(95-64)+(64-62) = 386

5. LOOK

 This is same as Scan scheduling but in this we do not move till end which reduce total
head moment. This is the best scheduling algorithm because it has minimum total head
Moment.

Total head moment = (50-34)+(34-11)+(62-11)+(64-62)+(95-64)+(119-95)+

 (123-119)+(180-123) = 208

6. C-LOOK

This is just an enhanced version of C-SCAN. In this the scanning doesn't go past the last
request in the direction that it is moving. It too jumps to the other end but not all the way
to the end. Just to the furthest request. C-SCAN had a total movement of 187 but this
scan (C-LOOK) reduced it down to 157 tracks. From this you were able to see a scan
change from 644 total head movements to just 157. You should now have an
understanding as to why your operating system truly relies on the type of algorithm it
needs when it is dealing with multiple processes.

 Total head moment = (50-34)+(34-11)+(180-11)+(180-123)+(123-119)+(119-95)+
 (95-64)+(64-62) = 326
