
MUQuestionPapers.com Page 1

Analysis of Algorithm

(May 2018)

Q.P. Code - 38841
Q 1 Answer the following

a. Write the difference between greedy method and dynamic programming. 5M

b. Explain the general procedure of divide and conquer method. 5M

Divide and Conquer method: This is the most widely applicable technique for designing efficient

algorithms. It works in three stages as shown below.

1) Divide: Recursively divide the bigger problem of size n into smaller sub-problems of size n/2

2) Solve: Sub-problems are solved independently.

3) Combine: Combine solutions of smaller sub-problems to derive the solution of larger big

problem of size n.

 Smaller sub-problems are similar to the larger problem with smaller arguments. Hence such

 Problems can be solved easily using recursion. Divide and conquer is multi-branched, Top-

 Down recursive approach. Each branch indicates one sub-problems and it calls itself with the

 Smaller argument.

Above diagram shows the working of Divide and Conquer method. Sub-problem may or may not

be of size n/2.

Greedy method Dynamic programming

1. Greedy method does not guarantee an

optimal solution.

1. Dynamic programming guarantees an

optimal solution.

2. Sub-problems do not overlap. 2. Sub-problems overlap.

3. It does little work. 3. It does more work.

4. Only considers the current choices. 4. Considers the future choices.

5. Construct the solution from the set of

feasible solutions.

5. There is no specialized set of feasible

choices.

6. Select choice which is locally optimum. 6. Select choices which is globally

optimum.

7. There is no concept of memorization. 7. Employ memorization.

8. Examples- Knapsack problems, Job

scheduling with deadlines, Kruskal ,

Prim’s.

8. Examples- All pair shortest path, 0/1

Knapsack, Travelling salesman problem,

LCS.

Problem of size n

Sub-problem of size n/2 Sub-problem of size n/2

Solution of sub-problem Solution of sub-problem

Solution of original problem

MUQuestionPapers.com Page 2

c. Determine the frequency counts for all statement in the following algorithm 5M

 Segment.

 I=1;

 While(I<=n)

 {

 X=X+I;

 I=I+1;

 }

 S/e Frequency Total Steps

 I=1; 1 1 1

While(I<=n) 1 I + n I + n

 { 0 - -

 X=X+I; 1 I I

 I=I+1; 1 1 1

 } 0 - -

2(I+1) + n.

d. What is backtracking Approach? Explain how it is used in Graph Coloring. 5M

Backtracking Approach:

1) Backtracking is the process where the entire problem is divided into several stages. The

algorithm then attempts to find the solution to the problem by constructing partial solutions

remain consistent with the requirements of the problem.

2) However, when an inconsistency with the requirement of the problem occurs the algorithm

backs up (backtracks) by removing the most recently constructed part of the solution and

trying another possibility.

3) For example, the algorithm will first find solution for stage one and stage two and so on till

stage N. However, if it cannot find the solution for stage N+1, then it will go back to stage N,

remove the solution it found for stage N and will come up with a new solution for stage N.

4) Examples: Graph Coloring & n-Queens problem.

Graph Coloring:

1) Coloring the vertices of the graph in such a way such that no two adjacent vertices have the

same color. This is called Graph Coloring.

2) It is also called as Vertex coloring or K-coloring.

3) The smallest number of color required for coloring the graph is called as Chromatic number.

4) Example:

 In Fig. A same color(Red) is assigned to adjacent vertices (A & B) which is against rule so we

 Backtrack and change the color as shown in the Fig. B. We cannot assign another color on the

MUQuestionPapers.com Page 3

 Place of Red because chromatic color should be minimum. If we assign another color on the

 Place of Red Chromatic Number Will be 4 for Fig. A. and if we see Fig B. chromatic number is 3

 Which is minimum. Fig. B is Right solution for Graph coloring,

Time Complexity – O(mⁿ)

Q 2.a. Explain with example how divide and conquer strategy is used in binary Search? 10M

 Binary search is an efficient searching method. While searching the elements using this method

 the most essential thing that the elements in the array should be sorted one. An element which

 Is to be sorted from the list of elements sorted in array should be sorted one. An element which is

 to be searched from the list of elements stored in array A [0…n-1] is called KEY element. Let A [m]

 be the mid element of array A. then these are three conditions that needs to be satisfied while

 searching the array using this method.

1) If KEY=A[m] then desired element is present in the list.

2) Otherwise if KEY<A[m] then search the left sub list

3) Otherwise if KEY>A[m] then search the right sub list.

This can be represented as

A[0] …… A[m-1] A[m] A[m+1] ……. A[n-1]

 Key?

 Search here if Key < A[m] Search here if Key < A[m]

 As shown above the array is divided into two part left and right sub list according to key element

 We decide in which list we can find the element. This is how divide and conquer strategy is used in

 Binary search.

 Algorithm: BINARY_SEARCH(A, Key)

 Low <- 1

 High <- n

 While low < high do

 Mid <- (low + High) / 2

 If A[Mid] == Key then

 return Mid

 else if A[Mid] < Key then

 Low <- mid + 1

 else

 High <- Mid – 1

 end

 end

 return 0

 Time Complexity – Best case =O(1), Average case & worst case = O(log₂n)

MUQuestionPapers.com Page 4

 b. Solve sum of subsets problem for following 10M

N=6 W={3,5,7,8,9,15} & M=20 Also write the Algorithm for it.

Solutions : Subset 1) {5, 7, 8}

 2) {9, 8, 3}

 3) {5, 15}

Algorithm:

 Let W be a set of elements & M be the expected sum of subset then

 Step1: Start with empty set.

 Step2: Add to the subset, the next element from the list.

 Step3: If the subset is having sum equal to M then Stop with that subset as solution,

 Step4: If the subset is not matching with the M or if we have reached to the end of the set

 Then backtrack through that subset until we find suitable value.

 Step5: If the subset is less then M then repeat Step2.

 Step6: If we have visited all the elements without finding suitable & No backtrack is possible

 Then stop without solution.

 Time Complexity – O(2ⁿ)

Q.3.a. Obtain the solution to knapsack problem by Greedy method n=7, m=15 (p1, 10M

 P2,…P7)=(10,5,15,7,6,18,3), (W1,W2,…W7)=(2,3,5,7,1,4,1)

MUQuestionPapers.com Page 5

Item Weight Value Value / Weight

P1 2 10 5

P2 3 5 1.667

P3 5 15 3

P4 7 7 1

P5 1 6 6

P6 4 18 4.5

P7 1 3 3

 Arrange the Item in increasing order of value / Weight Ratio

 P5, P1, P6, P7, P3, P2, P4.

 Capacity of Bag is 15.

 Now, P2 arrives but capacity of bag is only 2 and weight is 3 so we are going to take fraction

 Maximum Profit = 52 +
2

3
 *5 = 55.33

 b. Sort the list of the elements 10,5,7,6,1,4,8,3,2,9 using merge sort algorithm and 10M

 show its computing time is O(n logn).

 Merge sort 10, 5, 7, 6, 1, 4, 8, 3, 2, 9

Capacity of Bag Items value

15 ----- 0

14 P5 6

12 P5, P1 16

8 P5, P1, P6 34

7 P5, P1, P6, P7 37

2 P5, P1, P6, P7, P3 52

MUQuestionPapers.com Page 6

 Complexity Analysis

 Using Master method: T(n) = 2 T(𝑛
2
) + n

 Comparing with : T(n) = a T(𝑛
𝑏
) + f(n)

 a = 2, b = 2 & f(n) = n with k = 1

 where k is degree pf polynomial function f(n)

 a = bᴷ, 2 = 2ᵎ.

 So from the case I variant 2

 T(n) = O(nᴵᵒᵍ₂² log n)

 T(n) = O(n log n)

 “Hence Proved”

 Time Complexity - T(n) = O(n log₂n)

Q.4.a. Explain different string matching algorithms. 10M

 There are various String matching algorithms listed below.

 A] Naive:

 i) It is the simplest method which uses brute force approach.

 ii) It is a straight forward approach of solving the problem.

 iii) It compares first character of pattern with searchable text. If match is found, pointers in both

 strings are advanced. If match not found, pointer of text is incremented and pointer of

 pattern is reset. This process is repeated until the end of the text.

 iv) It does not require any pre-processing. It directly starts comparing both strings character by

 character.

 v) Time Complexity = O(m*(n-m))

 Algorithm -- NAVE_STRING_MATCHING (T, P)

 for i  0 to n-m do

 if P[1…….m] = = T[i+1…..i+m] then

 print “Match Found”

 end

 end

 B] Rabin-Karp:

 i) It is based on hashing technique.

 ii) It first compute the hash value of pattern and text. If hash values are same,

 i.e if hash(p) = hash(t). we check each character if characters are same pattern is

 found. If hash value are not same no need of comparing string.

 iii) Strings are compared using brute force approach. If pattern is found then it is called as

 Hit. Otherwise it is called as Spurious Hit.

 iv) Time Complexity = O(n), for worst case sometimes it is O(mn) when prime number is used

 very small.

MUQuestionPapers.com Page 7

 Algorithm – RABIN_KARP (T, P)

 n = T.length

 m = P.length

 hᵖ = hash(T

 hᵗ = hash(T) (0………m-1)

 for S=0 to n-m

 if (hᵖ = hᵗ)

 if (P(0…..m-1) == T(0…..m-1))

 print “Pattern Found”

 if (S < n-m)

 hᵗ = hash(S+1……………S+m-1)

 C) Finite Automata:

 i) Idea of this approach is to build finite automata to scan text T for finding all occurrences of

 of pattern P.

 ii) This approach examines each character of text exactly once to find the pattern. Thus it takes

 linear time for matching but preprocessing time may be large.

 iii) It is defined by tuple M = {Q, ∑, qₒ, F, ∂}

 Where Q = Set of States in finite automata

 ∑ = Sets of input symbols

 qₒ = Initial state

 F = Final State

 ∂ = Transition function

 iv) Time Complexity = O(Mᵌ|∑|)

 Algorithm – FINITE_AUTOMATA (T, P)

 State  0

 for I  1 to n

 State  ∂(State, tᵢ)

 If State == m then

 Match Found

 end

 end

 D) Knuth Morris Pratt (KMP)

 i) This is first linear time algorithm for string matching. It utilizes the concept of naïve approach

 in some different way. This approach keeps track of matched part of pattern.

 ii) Main idea of this algorithm is to avoid computation of transition function ∂ and reducing

 useless shifts performed in naive approach.

 iii) This algorithm builds a prefix array. This array is also called as ∏ array.

 iv) Prefix array is build using prefix and suffix information of pattern.

 v) This algorithm achieves the efficiency of O(m+n) which is optimal in worst case.

MUQuestionPapers.com Page 8

 Algorithm – KNUTH_MORRIS_PRATT (T, P)

 n = T.length

 m = P.length

 ∏ = Compute prefix

 q  0

 for i = 1 to n

 while q > 0 and P[q+1] ≠ T[i]

 q = ∏ [q]

 if P[q+1] = = T[i]

 q = q+1

 if q = = m

 Print “pattern found”

 q = ∏ [q]

 COMPUTE_PREFIX (P)

 M = P.length

 Let ∏ [1……m] be a new array

 ∏ [1] = 0

 K = 0

 for k = 0 to m

 while k > 0 and P[k+1] ≠ T[q]

 k = ∏ [k]

 if P[k+1] = = T[q]

 k = k + 1

 ∏ [q] = k

 return ∏

b. What do you understand by NP Complete? Explain is subset sum problem NP 10M

 complete? If so explain.

 i) NP complete is the combination of both NP and NP hard problem.

 ii) Decision problem C is called NP complete if it has following two properties.

 C is in NP, and

 Every problem X in NP is reducible to C in polynomial time, i.e. For every X ε NP, X ≤ᵨ C

This two factor prove that NP-complete problems are the harder problems in class NP.

They often referred as NPC.

NP Complete

MUQuestionPapers.com Page 9

 Sum of Subset:

 i) Sum of subset is NP complete.

 ii) It satisfy the above two condition. The problem cannot be solved in polynomial time but

 can be verified in polynomial time hence it is NP. Every problem in NP can be reduced in

 polynomial time hence it is NP hard. Therefore, sum of subset id NP complete.

 Example: set- { 3, 5, 7, 8, 9, 15}

 Time complexity = O(2ⁿ) = 2⁶ = 64 which is quiet large.

 So it requires more time to compute then polynomial time. But its verification is easy it

 Can be done into polynomial time.

Q.5.a. write a detailed note on Hamiltonian cycles. 10M

 - The Hamiltonian cycle of undirected graph G = <V, E> is the cycle containing each vertex in V.

 - If graph contains a Hamiltonian cycle, it is called Hamiltonian graph otherwise it is

 non-Hamiltonian.

 The dodecahedron shows the Hamiltonian, and the Hamiltonian cycle is shown by thick red lines.

 Whereas the bipartite graph with an odd number of vertices as shown above.

 - One way of checking if the graph is Hamiltonian or not is to list out all possible permutation of

 Vertices and check them one by one. There are m! different permutation of m vertices, and hence

 The running tome of algorithm would be Ω(m!) time. By encoding the graph using its adjacency

 Matrix representation, we can reduce the time Ω(√N) = Ω(2ⱽᴺ) which is not polynomial.

 - Here n represents the length of encoding of graph G. Thus, the given problem cannot be solved in

 Polynomial time.

 Verification

 - If given the solution string of Hamiltonian graph, it is very easy to prove the correctness of it. We

 Just need to check if the solution contains all the vertices of V and there must be an edge

 Between two consecutive vertices. This can be done in O(n²) time. Thus, the solution can be

 Verified in polynomial time., where n is the length of graph G. Verification algorithm A(x, y) is

 defined by two arguments, where x is the input string and y is the Binary string, called certificate y

 such that A(x, y) = 1, we say that algorithm verifies the string x. And the language defined by the

 algorithm is, L = {x ε {0, 1}* : there exist y ε {0, 1} such that A(x, y) = 1}

 - For each legal string x ε L, A must verify the string and produce the certificate y. And for any

 string x which is not in L, must not verify the string, and no certificate can prove that x ε L. For

 example if the graph is Hamiltonian, the proof can be checked in polynomial time as discussed

 earlier. But no vertices sequence should exist which can fool the algorithm to prove the non-

 hamiltonian graph as Hamiltonian.

MUQuestionPapers.com Page 10

 b. Explain how backtracking is used for solving n- queens problem. Show the state 10M

 space tree.

 i) n-queens problem is a problem in which n-queens are placed in n*n chess board, such that

 no 2 queen should attack each other.

 ii) 2 queens are attacking each other if they are in same row, column or diagonal.

 iii) For simplicity, State space tree is shown below. Queen 1 is placed in a 1st column in the 1st row.

 All the position is closed in which queen 1 is attacking. In next level, queen 2 is placed in 3rd

 Column in row 2 and all cell are crossed which are attacked by already placed 1 and 2. As can

 be seen below. No place is left to place neat queen in row 3, so queen 2 backtracks to next

 possible and process continue.

 iv) In a similar way, if (1, 1) position is not feasible for queen 1, then algorithm backtracks and put

 the first queen cell (1, 2), and repeats the procedure. For simplicity, only a few nodes are shown

 below in state space tree.

 v) Complete state space tree for the 4 – queen problem is shown above. 2 – queen problem is not

 feasible.

 vi) This is how backtracking is used to solve n-queens problems.

MUQuestionPapers.com Page 11

Q 6 Write short notes on (any two) 20M

a. Job sequencing with deadlines.

 i) Job sequencing is a problem in which n jobs are arranged in such a way that we get maximum

Profit. The job should complete their task within deadlines.

 ii) It is also called as Job scheduling with deadlines.

 iii) Time complexity = O(n²)

 Algorithm

 Step1: Sort the jobs Jᵢ into non-increasing order.

 Step2: Assign Empty slot as Maximum deadline value i.e. Empty slot = Dmax.

 Step3: Take i index value compute value of k

 K = min (Dmax, deadline(i))

 Step4: If value of K is greater and equal to one check empty slot. Empty slot = k

 If empty slot is full. check previous slot if it is free assign job to that slot.

 If slot is full ignore that job.

 Step5: increment value of i till all the jobs are not finished. Repeat Step3.

 Step6: Stop.

 Example

 Let n=4, (J1, J2, J3, J4)=(100, 10, 15, 27), (D1, D2, D3, D4)=(2, 1, 2, 1) find feasible solution.

 With job scheduling with deadlines.

 Arrange the jobs in non-increasing value.

Index 1 2 3 4

Job J1 J4 J3 J2

Value 100 27 15 10

Deadlines 2 1 2 1

 Dmax = 2

Time slot 1 2

Status Empty Empty

 i=1

 K= min (Dmax, Deadline(i))

 K= min (2, 2)

 K=2 (k ≥ 1)

 Time slot = k = 2 (empty)

Index 1 2 3 4

Job J1 J2 J3 J4

Value 100 10 15 27

Deadlines 2 1 2 1

MUQuestionPapers.com Page 12

Time slot 1 2

Status Empty J1

 i=2

 K= min (Dmax, Deadline(i))

 K= min (2, 1)

 K=1 (k ≥ 1)

 Time slot = k = 1 (empty)

Time slot 1 2

Status J4 J1

 Maximum Profit = J1 + J4

 = 27 + 100

 = 127

b. 8 Queen problem

 i) 8-queens problem is a problem in which 8 queens are arranged 8*8 chess board in such a way

 that no 2 queens should attack each other.

 ii) 2 queens can attack each other if they are in same row, column or diagonal.

 iii) Queen 1 is placed in a 1st column in the 1st row. All the position is closed in which queen 1 is

 attacking. In next level, queen 2 is placed in 3rd Column in row 2 and all cell are crossed which

 are attacked by already placed 1 and 2. This procedure keeps on going if we don’t get feasible

 solution we backtrack and change the position of previous queen.

 iv) 8 queen problem has ⁶⁴C₈ = 4, 42, 61, 65, 368 different arrangements, out of these only 92

 arrangements are valid solutions. Out of which only 12 are fundamental solution. Rest of 80

 solutions can be generated by reflection or rotation.

 v) Time Complexity = O(n!)

X X Q1 X X X X X

X X X X X Q2 X X

X Q3 X X X X X X

X X X X X X Q4 X

Q5 X X X X X X X

X X X Q6 X X X X

X X X X X X X Q7

X X X X Q8 X X X

MUQuestionPapers.com Page 13

 Algorithm Queen (n)

 for column  1 to n do

 {

 if (Place(row, column)) then

 {

 Board [row]=column;

 if (row = = n) then

 Print_board (n)

 else

 Queen(row+1, n)

 }

 }

 Place(row, column)

 {

 for i  row -1 do

 {

 if (board [i] = column) then

 return 0;

 else if (abs(board [i] = column)) = abs(i-row) then

 return 0;

 }

 return 1;

 }

c. Longest common subsequence

 i) The longest common sequence is the problem of finding maximum length common

 subsequence from given two string A and B.

 ii) Let A and B be the two string. Then B is a subsequence of A. a string of length m has

 2ᵐ subsequence.

 iii) This is also one type of string matching technique. It works on brute force approach.

 iv) Time complexity = O(m*n)

 Algorithm LONGEST_COMMON_SUBSEQUENCE (X, Y)

 // X is string of length n and Y is string of length m

 for i  1 to m do

 LCS [i, 0]  0

 end

 for j  0 to n do

 LCS [0, j]  0

 end

 for i  1 to m do

 for j  1 to n do

 if Xᵢ = = Yj then

 LCS [i, j] = LCS [i-1, j-1] +

 else if LCS [i-1, j] ≥ LCS [i, j-1]

MUQuestionPapers.com Page 14

 LCS [i, j] = LCS [i-1, j]

 else

 LCS [i, j] = LCS [i, j-1]

 end

 end

 end

 end

 return LCS

 Example A = ABCF, B = ACF

 A =

O 1 2

A C F

 Draw matrix

0 0 0 0

0

0

0

0

 r = 1, c = 1

 x [0] = y [0] (true A = A)

 LCS [1, 1] = L [0, 0] + 1 = 0+1 = 1

0 0 0 0

0 1

0

0

0

 r = 1, c = 2

 x [0] ≠ y [0] (true A = C)

 LCS [0, 1] ≥ LCS [1, 1] (0 ≥ 1 (not true))

 LCS [1, 2] = LCS [1, 2-1]

 LCS [1, 2] = L [1, 1] = 1

0 1 2 3

A B C F

0 0 0 0

0 1 1

0

0

0

MUQuestionPapers.com Page 15

 LCS [1, 3] = 1

 LCS [2, 1] = 1

 LCS [2, 2] = 1

 LCS [2, 3] = 1

 LCS [3, 1] = 1

 LCS [3, 2] = 2

 LCS [3, 3] = 2

 LCS [4, 1] = 1

 LCS [4, 2] = 2

 LCS [4, 3] = 3

 LCS =

0 1 2

A C F

