
DATA STRUCTURES 

( MAY 2019) 

Q.1 

(a) Explain Linear and Non-Linear data structures.                    (5) 

➔Linear and Non-linear Structures 

Linear: If the elements of a data structure are stored in a linear or 

sequential order, then it is a linear data structure. Examples include 

arrays, linked lists, stacks, and queues. Linear data structures can be 

represented in memory in two different ways. One way is to have to a 

linear relationship between elements by means of sequential memory 

locations. The other way is to have a linear relationship between 

elements by means of links. 

Example: 

1.Linked Lists 

Fig.1 

Simple Linked List 

2. Stacks 

A AB ABC ABCD ABCDE 
   

0            1          2           3             TOP=4        5            6         7 

Fig.2 Array representation of a stack 

Non-Linear: if the elements of a data structure are not stored in a      

sequential order, then it is a non-linear data structure. The relationship       

of adjacency is not maintained between elements of a non-linear data      

structure. Examples include trees and graphs. 

Example: 

1. Trees 



 

2. Graphs 

 

(b) Explain Priority Queue with example.                                     (5) 

➔Priority Queue is an extension of queue with following properties. 

• Every item has a priority associated with it. 

• An element with high priority is dequeued before an element with low 

If two elements have the same priority, they are served according to their 

order in the queue. 

• A typical priority queue supports following operations. 

• insert(item, priority): Inserts an item with given priority. 

• getHighestPriority(): Returns the highest priority item. 

• deleteHighestPriority(): Removes the highest priority item. 

• When arrays are used to implement a priority queue, then a separate 

queue for each priority numberis maintained. Each of these queues will 

be implemented using circulararrays or circular queues. Every individual 

queue will have itsown FRONT and REAR pointers. 

• We use a  two-dimensional array for this purpose where each  queue 

wil be allocated the same amount of space. 

• FRONT[K] and REAR[K] contain the front and rear values of row K, 

where K is the priority number. 

 

 



Example: 

FRONT REAR 

3 3 

1 3 

4 5 

4 1 

1    2    3    4    5                                    1    2    3    4    5 

1                 A 1 A 

2    B    C    D    2 B   C   D 

3 E     F           3      R       E     F 

4    I                G     H 4 I                G    H 

Priority Queue matrix                           Priority Queue Matrix after insertion 

Of an element 

• To insert a new element with priority K in the priority queue, add the 

element at the rear endof row K, where K is the row number as well as 

the priority number of that element. 

• . In our priority queue, the firstnon-empty queue is the one with 

priority number 1 and the frontelement is A, so A will be deleted and 

processed ccfirst. 

(c) Write a Programe in ‘c’to impliment Quick sort.                 (10) 

Program: 

#include<stdio.h> 

#include<conio.h> 

void quicksort(int number[25],int first,int last) 

{ 

int i,j,pivot,temp; 

if(first<last) 

{ 

pivot=first; 

i=first; 

j=last; 

FRONT REAR 

3 3 

1 3 

4 1 

4 1 



while(i<j) 

{ 

while(number[i]<=number[pivot]&&i<last) 

i++; 

while(number[j]>number[pivot]) 

j--; 

if(i<j) 

{ 

temp=number[i]; 

number[i]=number[j]; 

number[j]=temp; 

 

} 

} 

temp=number[pivot]; 

number[pivot]=number[j]; 

number[j]=temp; 

quicksort(number,first,j-1); 

quicksort(number,j+1,last); 

} 

} 

int main() 

{ 

int i,count,number[25]; 

printf("How many elements are u going to enter?"); 

scanf("%d",&count); 

 



printf("enter %d element:",count); 

for(i=0;i<count;i++) 

scanf("%d",&number[i]); 

quicksort(number,0,count-1); 

printf("Order of sorted elements"); 

for(i=0;i<count;i++) 

scanf("%d",&number[i]); 

return 0; 

} 

OUTPUT: 

How many elements are u going to enter?4 

enter 4 element:34 

56 

22 

31 

Order of sorted elements 

22 

31 

34 

56 

 

 

Q.2 

(a) Write a programe to impliment Circular Lined list Provide 

the following oparation:                                                                 (10) 

(i) Insert a node 

(ii) Delete a node 

(iv) Display the list 

Program: 

#include <stdio.h> 

#include <string.h> 



#include <stdlib.h> 

#include <stdbool.h> 

struct node 

{ 

int data; 

int key; 

struct node *next; 

}; 

struct node *head = NULL; 

struct node *current = NULL; 

bool isEmpty() 

{ 

return head == NULL; 

} 

int length() 

{ 

int length = 0; 

if(head == NULL) 

{ 

return 0; 

} 

current = head->next; 

while(current != head) 

{ 

length++; 

current = current->next; 

} 

return length; 

} 



void insertFirst(int key, int data) 

{ 

struct node *link = (struct node*) malloc(sizeof(struct node)); 

link->key = key; 

link->data = data; 

if (isEmpty()) 

{ 

head = link; 

head->next = head; 

} 

else 

{ 

link->next = head; 

head = link; 

} 

} 

struct node * deleteFirst() 

{ 

struct node *tempLink = head; 

if(head->next == head) 

{ 

head = NULL; 

return tempLink; 

} 

head = head->next; 

return tempLink; 

} 

void printList() 

{ 



struct node *ptr = head; 

printf("\n[ "); if(head != NULL) 

{ 

while(ptr->next != ptr) 

{ 

printf("(%d,%d) ",ptr->key,ptr->data); 

ptr = ptr->next; 

} 

} 

printf(" ]"); 

} 

main() 

{ 

insertFirst(1,10); 

insertFirst(2,20); 

insertFirst(3,30); 

insertFirst(4,1); 

insertFirst(5,40); 

insertFirst(6,56); 

printf("Original List: "); 

printList(); 

while(!isEmpty()) 

{ 

struct node *temp = deleteFirst(); 

printf("\nDeleted value:"); 

printf("(%d,%d) ",temp->key,temp->data); 

} 

printf("\nList after deleting all items: "); 

printList(); 



} 

 

OUTPUT: 

Original List: 

 

[ (6,56) (5, 40) (4,1) (3,30) (2,20)  (1,10) ] 

 

Deleted value: (6,56) 

 

Deleted value: (5, 40) 

 

Deleted value: (4,1) 

 

Deleted value:  (3,30) 

 

Deleted value: (2,20) 

 

Deleted value: (1,10) 

 

nList after deleting all items: 

[   ] 

 
 

(b) Explain Threaded Binary tree in detail                                 (10) 

➔ Threaded Binary Tree: 

• A threaded binary tree is the same as that of a binary tree but with a 

difference in storing the NULL pointers. 

• In the linked representation, a number of nodes contain a NULL pointer, 

either in their left or right fields or in both. 

• For example, the NULL entries can be replaced to store a pointer to the 

in-order predecessor or the in-order successor of the node. 

• These special pointers are called threads and binary trees containing 

threads are called threaded trees. 

• There are many ways of threading a binary tree and each type may vary 

according to the way the tree is traversed. 

• 1. One-way Threading 

2. Two-way Threading 

 



 

Fig1. Binary tree with one-way threading 

 

 

Fig2. Binary tree with two-way threading 

• Apart from this, a threaded binary tree may correspond to one-way 

threading or a twoway threading. 

• In one-way threading, a thread will appear either in the right field or the 

left field of the node. 

• A one-way threaded tree is also called a single-threaded tree. 

• one-way threaded tree is called a rightthreaded binary tree. 

• In a two-way threaded tree, also called a double-threaded tree, threads 

will appear in both the left and the right field of the node. 

• A two-way threaded binary tree is also called a fully threaded binary tree. 

• Advantages of Threaded Binary Tree: 

1. It enables linear traversal of elements in the tree. 

2. Linear traversal eliminates the use of stacks which in turn 

consume a lot of memory space and computer time. 

3. It enables to find the parent of a given element without explicit use 

of parent pointers. 



4. Since nodes contain pointers to in-order predecessor and 

successor, the threaded tree enables forward and backward 

traversal of the nodes as given by in-order fashion. 

• we see the basic difference between a binary tree and a threaded binary 

tree is that in binary trees a node stores a NULL pointer if it has no child 

and so there is no way to traverse back. 

Q.3 

(a) Explain Huffman Encoding with suitable example              (10) 

Huffman Code: 

- Huffman code is an application of binary trees with minimum weighted 

external path length is to obtain an optimal set for messages M1, M2, …Mn 

- Message is converted into a binary string. 

- Huffman code is used in encoding that is encrypting or compressing the text 

in the WSSS communication system. 

- It use patterns of zeros and ones in communication system these are used at 

sending and receiving end. 

- suppose there are n standard message M1, M2, ……Mn. Then the frequency 

of each message is considered, that is message with highest frequency is 

given priority for the encoding. 

- The tree is called encoding tree and is present at the sending end. - The 

decoding tree is present at the receiving end which decodes the string to get 

corresponding message. 

- The cost of decoding is directly proportional to the number of bits in the 

transmitted code is equal to distance of external node from the root in the 

tree.      Example 

 

Symbol A B C D E 

Frequency 24 12 10 8 8 

 

Arrange the message in ascending order according to their frequency 

 
Merge two minimum frequency message 



 
Rearrange in ascending order 

 
Merge two minimum frequency message 

 
Rearrange in ascending order 

 

Merge two minimum frequency message 

 
Again Rearrange in ascending order 



 
Merge two minimum frequency message 

 
Huffman code 

A = 0 

B = 111 

C = 110 

D= 100 

E = 101 

 

 

(b) Write a program in ‘C’ to check for balanced parenthesis in 

an   expression using stack.                                                           (10) 

➔ Program 

#include <stdio.h> 

#include <string.h> 

#define MAXSIZE 100 

#define TRUE 1 

#define FALSE 0 

struct Stack { 

int top; 



int array[MAXSIZE]; 

} st; 

void initialize() { 

st.top = -1; 

} 

int isFull() { 

if(st.top >= MAXSIZE-1) 

return TRUE; 

else 

return FALSE; 

} 

int isEmpty() { 

if(st.top == -1) 

return TRUE; 

else 

return FALSE; 

} 

void push(int num) { 

if (isFull()) 

printf("Stack is Full...\n"); 

else { 

st.array[st.top + 1] = num; 

st.top++; 

} 

} 

int pop() { 

if (isEmpty()) 

printf("Stack is Empty...\n"); 

else { 

st.top = st.top - 1; 

return st.array[st.top+1]; 

} 

} 

int main() { 

char inputString[100], c; 

int i, length; 

initialize(); 

printf("Enter a string of paranthesis\n"); 

gets(inputString); 

length = strlen(inputString); 

for(i = 0; i < length; i++){ 

if(inputString[i] == '{') 

push(inputString[i]); 



else if(inputString[i] == '}') 

pop(); 

else { 

printf("Error : Invalid Character !! \n"); 

return 0; 

} 

} 

 

if(isEmpty()) 

printf("Valid Paranthesis Expression\n"); 

else 

printf("InValid Paranthesis Expression\n"); 

 

return 0; 

} 

 

OUTPUT: 

Enter a string of paranthesis 

{{{}{}{{}}{}}} 

Valid Paranthesis Expression 

 

Enter a string of paranthesis 

{{{}{}{}}}{}{}{{} 

InValid Paranthesis Expression 

 

Q.4 

(a) Write a program in ‘C’ to implement  Queue using array. (10) 

➔ Program 

#include<stdio.h> 

#include<conio.h>  

#define size 5 

int q[size],front=-1,rear=-1,i,element; 

void insert(int ele); 

int del(); 

void disp(); 



 

void main() 

{   int 

ch,ele;   

clrscr(); 

printf("\t ***** Main Menu *****"); 

printf("\n 1. insert \n2.delete \n3.display 

\n4.Exit\n");  do  { 

printf("\n Enter your choice: \n \n"); 

scanf("%d",&ch);  

switch(ch) 

{ 

case 1:printf("\n Enter Element to Insert \n "); 

scanf("%d",&ele)

;    insert(ele);    

disp();    break; 

case 2:ele=del(); 

scanf("\n %d is the deleted element \n ",ele); 

disp();    

break; 

case 3:disp(); 

break; 

case 4:break; 

default:printf(" \n Invalid Statement \n"); 

} 

} 

while(ch!=4); getch(); 

} 

void insert(int ele) 

{ 

if(front==-1 && rear==-1) 



{ 

front=rear=0;    q[rear]=ele; 

} 

else if((rear+1)%size==front) 

{ 

printf("\n  Queue is Full \n"); 

}  

else 

{  

rear=(rear+1)%size;  

q[rear]=ele; 

} 

} 

int del() 

{ 

if(rear==-1 && front==-1) 

{ 

printf("\n Queue is Empty \n"); 

} 

else if(rear==front) 

{  rear=-

1;     

front=-1; 

printf("\n Queue is Empty \n"); 

}  

else  

{ 

element=q[front];    front=(front+1)%size; 

}  return 

element; 



} 

void disp() 

{ 

if(rear==-1 && front==-1) 

{ 

printf("\n Queue is Empty \n"); 

}  

else  

{ 

for(i=front;i<(rear+1)%size;i++) 

{ 

printf("\t %d",q[i]); 

} 

} 

} 

OUTPUT: 

***** Main Menu ***** 

1. insert 

2.delete 

3.display 

4.Exit 

Enter your choice: 1 

Enter Element to Insert: 23 

Enter your choice: 1 

Enter Element to Insert: 45 

 

Enter your choice: 2 

23 is the deleted element 

Enter your choice: 3 



45 

Enter your choice: 4 

 

 

(b) Explain different cases for deletion of a node in binary search 

tree. Write function for each case                                                 (10) 

➔  When we delete a node, three possibilities arise. 

1) Node to be deleted is leaf: Simply remove from the tree. 

 

2) Node to be deleted has only one child: Copy the child to the node and delete 

the child 

 

3) Node to be deleted has two children: Find inorder successor of the node. 

Copy contents of the inorder successor to the node and delete the inorder 

successor. Note that inorder predecessor can also be used. 

 

 



 

• The important thing to note is, inorder successor is needed only when 

right child is not empty. In this particular case, inorder successor can be 

obtained by finding the minimum value in right child of the node. 

• C Function: 

void deletion(Node*& root, int item) 

{ 

Node* parent = NULL; 

Node* cur = root; 

          search(cur, item, parent); 

          if (cur == NULL) 

return; 

          if (cur->left == NULL && cur->right == NULL) 

{ 

if (cur != root) 

{ 

if (parent->left == cur) 

parent->left = NULL; 

else 

parent->right = NULL; 

} 

else 

root = NULL; 

          free(cur); 

} 

else if (cur->left && cur->right) 

{ 

Node* succ  = findMinimum(cur- >right); 

          int val = succ->data; 

         deletion(root, succ->data); 

         cur->data = val; 

} 

 



else 

    { 

Node* child = (cur->left)? Cur- >left: cur->right; 

if (cur != root) 

{ 

if (cur == parent->left) 

parent->left = child; 

else 

parent->right = child; 

} 

else 

root = child; 

free(cur); 

} 

} 

 

Node* findMinimum(Node* cur) 

{ 

while(cur->left != NULL) { 

cur = cur->left; 

} 

return cur; 

} 

 

Q.5 

(a) Write a program in ‘C’ to implement Stack using Linked-List. 

Perform the following operation: 

(i) Push 

(ii) Pop 

(iii) Peek 

(iii) Display the stack contents                                                     (10) 

PROGRAM: 

#include <stdio.h> 

#include < stdlib.h> 

struct node 



{ 

int info; 

struct node *ptr; 

}*top,*top1,*temp; 

int topelement(); 

void push(int data); 

void pop(); 

void display(); 

void peek(); 

void create(); 

int count = 0; 

void main() 

{ 

int no, ch, e; 

printf("\n 1 - Push"); 

printf("\n 2 - Pop"); 

printf("\n 3 - Peek"); 

printf("\n 4 - Exit"); 

printf("\n 5 - Dipslay"); 

create(); 

while (1) 

{ 

printf("\n Enter choice : "); 

scanf("%d", &ch); 

switch (ch) 

{ 

case 1: 

printf("Enter data : "); 

scanf("%d", &no); 



push(no); 

break; 

case 2: 

pop(); 

break; 

case 3: 

if (top == NULL) 

printf("No elements in stack"); 

else 

{ 

e = topelement(); 

printf("\n Top element : %d", e); 

} 

break; 

case 4: 

exit(0); 

case 5: 

display(); 

break; 

default : 

printf(" Wrong choice, Please enter correct choice  "); 

break; 

} 

} 

} 

void create() 

{ 

top = NULL; 

} 



void push(int data) 

{ 

if (top == NULL) 

{ 

top =(struct node *)malloc(1*sizeof(struct node)); 

top->ptr = NULL; 

top->info = data; 

} 

else 

{ 

temp =(struct node *)malloc(1*sizeof(struct node)); 

temp->ptr = top; 

temp->info = data; 

top = temp; 

} 

count++; 

} 

void display() 

{ 

top1 = top; 

if (top1 == NULL) 

{ 

printf("Stack is empty"); 

return; 

} 

while (top1 != NULL) 

{ 

printf("%d ", top1->info); 

top1 = top1->ptr; 



} 

} 

void peek() 

{ 

top1 = top; 

if (top1 == NULL) 

{ 

printf("\n Error : Trying to pop from empty stack"); 

return; 

} 

else 

top1 = top1->ptr; 

printf("\n Popped value : %d", top->info); 

free(top); 

top = top1; 

count--; 

} 

int topelement() 

{ 

return(top->info); 

} 

 

 

 

 

 

 

 



OUTPUT: 

1- Push 

2- Pop 

3- Peek 

4- Display 

5- Exit 

Enter choice : 1 

Enter data : 32 

 

Enter choice : 1 

Enter data : 34 

 

Enter choice : 2 

Popped value : 34 

 

Enter choice : 3 

Peek element : 32 

 

Enter choice : 4 

32 

 

Enter choice : 5 

 

 

(b)  Explain Depth First search (DFS) Traversal with an example. 

Write the recursive function for DFS                                           (10) 

➔Depth-first Search 

- The depth-first search algorithm (Fig. 13.22) progresses by 

expanding the starting node of G and then going deeper and 

deeper until the goal node is found, or until a node that has no 

children is encountered. 

- When a dead-end is reached, the algorithm backtracks, returning 

to the most recent node that has not been completely explored. 

- depth-first search begins at a starting node A which becomes the 

current node. 

- Then, it examines each node N along a path P which begins at A. 

- That is, we process a neighbour of A, then a neighbour of 

neighbour of A, and so on. 

Algorithm for depth-first search 



- Step 1: SET STATUS=1(ready state) for each node in G 

- Step 2: Push the starting nodeAon the stack and set its 

STATUS=2(waiting state) 

- Step 3: Repeat Steps4and5until STACK is empty 

- Step 4: Pop the top node N. Process it and set its 

STATUS=3(processed state) 

- Step 5: Push on the stack all the neighbours ofNthat are in the 

ready state (whose STATUS=1) and set their STATUS=2(waiting 

state) [END OF LOOP] 

- Step 6: EXIT 

Example: 

 

• Adjacency list for G: 

o A: B, C, D 

o B: C, E 

o C: E 

o D: C, F 

o E: A 

o F: C 

o G: D, F, H 

o H: C 

 

 

Recursive Function: 

void Graph::DFSUtil(int v, bool visited[]) 

{ 

visited[v] = true; 

cout << v << " "; 

 

// Recur for all the vertices adjacent 

// to this vertex 



list<int>::iterator i; 

for (i = adj[v].begin(); i != adj[v].end(); ++i) 

if (!visited[*i]) 

DFSUtil(*i, visited); 

} 

 

// DFS traversal of the vertices reachable from v. 

// It uses recursive DFSUtil() 

void Graph::DFS(int v) 

{ 

// Mark all the vertices as not visited 

bool *visited = new bool[V]; 

for (int i = 0; i < V; i++) 

visited[i] = false; 

 

// Call the recursive helper function 

// to print DFS traversal 

DFSUtil(v, visited); 

} 

 

Q.6. Write Short notes on (any two)                                            (20)         

(a)  Application of Linked-List –Polynomial addition 

➔ Application of Linked list 

- Linked lists can be used to represent polynomials and the different 

operations that can be performed on them 

- we will see how polynomials are represented in the memory using 

linked lists. 

 

1. Polynomial representation 

- Let us see how a polynomial is represented in the memory using a 

linked list. 

- Consider a polynomial 6x3 + 9x2 + 7x + 1. . Every individual term 

in a polynomial consists of two parts, a coefficient and a power. 

- Here, 6, 9, 7, and 1 are the coefficients of the terms that have 3, 2, 1, 

and 0 as their powers respectively. 

- Every term of a polynomial can be represented as a node of the 

linked list. Figure shows the linked representation of the terms of the 

above polynomial. 



 

Figure.  Linked representation of a polynomial 

- Now that we know how polynomials are represented using nodes of 

a linked list. 

- Example: 

Input: 

1st number = 5x^2 + 4x^1 + 2x^0 

2nd number = 5x^1 + 5x^0 

Output: 

5x^2 + 9x^1 + 7x^0 

Input: 

1st number = 5x^3 + 4x^2 + 2x^0 

2nd number = 5x^1 + 5x^0 

Output: 

5x^3 + 4x^2 + 5x^1 + 7x^0 

 

(b) Collision Handling technique 

➔ There are mainly two methods to handle collision: 

       1) Separate Chaining 

       2) Open Addressing 

1. Separate Chaining 

• The idea is to make each cell of hash table point to a linked list of records 

that have same hash function value. 

• To handle collisions, the hash table has a technique known as separate 

chaining. Separate chaining is defined as a method by which linked lists 

of values are built in association with each location within the hash table 

when a collision occurs. 

• The concept of separate chaining involves a technique in which each 

index key is built with a linked list. This means that the table's cells have 

linked lists governed by the same hash function. 

• Let us consider a simple hash function as “key mod 7” and sequence of 

keys as 50, 700, 76, 85, 92, 73, 101. 



 

• Advantages: 

1) Simple to implement. 

2) Hash table never fills up, we can always add more elements to chain. 

3) Less sensitive to the hash function or load factors. 

4) It is mostly used when it is unknown how many and how frequently 

keys may be inserted or deleted. 

2. Open Addressing 

• Like separate chaining, open addressing is a method for handling 

collisions. 

• In Open Addressing, all elements are stored in the hash table itself. 

• So at any point, size of the table must be greater than or equal to the total 

number of keys 

• In such a case, we can search the next empty location in the array by 

looking into the next cell until we find an empty cell. 

• This technique is called linear probing. 

a) Linear Probing: In linear probing, we linearly probe for next slot. For 

example, typical gap between two probes is 1 as taken in below example 

also. 

let hash(x) be the slot index computed using hash function and S be the 

table size 



a) Qudratic Probing: Quadratic probing operates by taking the original 

hash index and adding successive values of an arbitrary quadratic 

polynomial until an open slot is found. 

• Let us consider a simple hash function as “key mod 7” and sequence of 

keys as 50, 700, 76, 85, 92, 73, 101. 

 

(c) Expression Tree 

➔ Expression Tree 

• Expression tree is a binary tree in which each internal node corresponds 

to operator and each leaf node corresponds to operand. 

• A binary expression tree is a specific kind of a binary tree used to 

represent expressions. 

• The leaves of the binary expression tree are operands, such as constants 

or variable names, and the other nodes contain operators. 

• Assume the set of possible operators are {'+', '-', '*', '/'}. The set of 

possible operands are ['0' - '9']. See the figure below, which is the binary 

expression tree for the expression (in in-fix notation): (((2+3)*9)+7). 

 

https://en.wikipedia.org/wiki/Quadratic_polynomial
https://en.wikipedia.org/wiki/Quadratic_polynomial


 
• Construction of Expression Tree: 

Now For constructing expression tree we use a stack. We loop through 

input expression and do following for every character. 

1) If character is operand push that into stack 

2) If character is operator pop two values from stack make them its child 

and push current node again. 

At the end only element of stack will be root of expression tree 

• Algorithm For Expression tree 

Let t be the expression tree 

If  t is not null  then 

If  t.value is operand then 

Return  t.value 

A = solve( t.left ) 

B =solve( t.right ) 

// calculate applies operate ‘t.value’ 

// on A and B, and returns value 

Return calculate (A, B, t.value) 

(d) Topological Sorting 

• Topological sort of a directed acyclic graph (DAG) G is defined as a 

linear ordering of its nodes in which each node comes before all nodes to 

which it has outbound edges. Every DAG has one or more number of 

topological sorts. 

• A topological sort of a DAG G is an ordering of the vertices of G such 

that if G contains an edge (u, v), then u appears before v in the ordering 

• Note that topological sort is possible only on directed acyclic graphs that 

do not have any cycles. 



• For a DAG that contains cycles, no linear ordering of its vertices is 

possible. 

• In simple words, a topological ordering of a DAG G is an ordering of its 

vertices such that any directed path in G traverses the vertices in 

increasing order. 

• Topological sorting is widely used in scheduling applications, jobs, or 

tasks. The jobs that have to be completed are represented by nodes, and 

there is an edge from node u to v if job u must be completed before job v 

can be started. 

• A topological sort of such a graph gives an order in which the given jobs 

must be performed. 

• The two main steps involved in the topological sort algorithm include: 

1.Selecting a node with zero in-degree 

2.Deleting N from the graph along with its edges 

• Algorithm For topological Sorting 

Step 1: Find the in-degree INDEG(N) of every node in the graph 

Step 2: Enqueue all the nodes withazero in-degree 

Step 3: Repeat Steps4and5until the QUEUE is empty 

Step 4: Remove the front nodeNof the QUEUE by setting 

FRONT=FRONT+1 

Step 5: Repeat for each neighbourMof node N: a) Delete the edge from N        

to M by setting INDEG(M)=INDEG(M)-1 b) IF INDEG(M) =,then 

Enqueue M, that is, addMto the rear of the queue [END OF INNER 

LOOP] [END OF LOOP] 

Step 6: Exit 

• Example: 

 
Topological sort can be given as: 

• A, B, C, D, E 

• A, B, C, E, D 

• A, C, B, D, E 

• A, C, B, E, D 


