Paper / Subject Code: 88636 / Physics: Nuclear Physics

sen-VI

Time: 3 hrs.

M. M.: 100

N.B.:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Draw neat diagrams wherever necessary.
- 4. Symbols have usual meaning unless otherwise stated.
- 5. Use of non-programmable calculator is allowed.

Constants: Planck's constant (h) = $6.64 \times 10^{-34} \text{ J-s}$;

Mass of an electron (m_e) = 9.10×10^{-31} Kg = 0.00055 amu

Charge on electron (e) = 1.60×10^{-19} C

Speed of light (c) = 3×10^8 m/s

 $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Q1. Attempt any two

- (i) Discuss Gamow's theory of α-decay?
- (ii) (A) Explain how the velocity of α-particles is determined using 10 magnetic spectrograph?
 - (B) Write note on short range alpha particles.
- (iii) Describe the detection of neutrino using Cowan and Reines 10 experiment.
- (iv) Explain three different types of β -decay. Derive the energetic for 10 K-capture process.

Q2 Attempt any two

- (i) Obtain expression for binding energy of a nucleus based on liquid drop 10 model.
- (ii) What is γ ray spectra? Explain the selection rules in case of γ -decay. 10 Also discuss the phenomenon of internal conversion.
- (iii) What are mass parabolas? For odd A nuclei, derive expression for the charge and mass of the most stable isobar.
- (iv) Describe Mossbauer effect using its experimental set up. 10

Q3 Attempt any two

- (i) What is natural fusion? Explain energy productions in stars using 10 carbon cycle.
- (ii) Explain the Nuclear cycle in a thermal nuclear reactor and show how it leads to the Four factor formula. How does this formula get modified if the reactor fuel contains only U²³⁵ and no U²³⁸?
- (iii) Explain construction and working of Van de Graff generator in detail 10 with the help of schematic diagram.
- (iv) Describe the construction and working of Betatron.

51045

Page 1 of 2

Paper / Subject Code: 88636 / Physics: Nuclear Physics

Q4	Attem	pt any two	10
	(i)	Summarize the important experimental properties of the deuteron.	, 1,0 ,
	(ii)	Explain meson theory of nuclear Force. Using Heisenberg's uncertainty principle, estimate the mass of meson.	10
	(iii)	What are elementary particles? Give the basis of their classification.	10
	(iv)	(a) State conservation laws for various properties of elementary particles.	10
		(b) Give the basic properties of neutrinos and antineutrinos.	
Q5.	Attempt any four		
	(i)	Explain what is Specific ionization and Stopping power.	05
	(ii)	Explain continuous β-particle spectra.	05
	(iii)	Write a note on nuclear isomerism.	05
	(iv)	What are mirror nuclei? For the mirror nuclei, ¹⁵ / ₇ N and ¹⁵ / ₈ O, calculate Coulomb coefficient.	05
	~ (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Given: $M(^{15}_{7}N) = 15.000108$ amu, $M(^{15}_{8}O) = 15.00307$ amu, $m_{p} = 1.008665$ amu, $m_{p} = 1.007825$	£ 9
To the So	(v)	If the fission process starts with the 3000 neutrons and the multiplication factor $k = 1.05$, calculate the number of neutrons present	05
	%	in the tenth generation.	
	(vi)	The radius of dees in the cyclotron is 35 cm and magnetic field is	05
	3	3000 Gauss. What would be the velocity and energy of protons?	0
	2	Given: $m_p = 1.67 \times 10^{-27} \text{Kg}$, $q = 1.6 \times 10^{-19} \text{C}$.	
7	(vii)	Write a short note on photon.	05
6	(viii)	Explain qualitatively the Quark model.	05

51045