M. M.: 100

## Time: 3 hrs.

### N.B.:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Draw neat diagrams wherever necessary.
- 4. Symbols have usual meaning unless otherwise stated.
- 5. Use of non-programmable calculator is allowed.

## Q1. Attempt any two

- State Kepler's three laws of planetary motion and prove second and third laws.
- Show that when body moves in a central force field its motion is 10 (ii) confined to a plane.
- Obtain the equation of motion of a particle of mass m as related to the 10 (iii) rotating earth.
- A starred system rotates with a variable angular velocity  $\omega$  with respect 10 (iv) space. inertial system fixed in  $\frac{d\mathbf{r}}{dt} = \frac{d^*\mathbf{r}}{dt} + \mathbf{\omega} \times \mathbf{r}$

Hence obtain the Coriolis theorem.

#### Q2 Attempt any two

- 10 a) What is virtual displacement? (i)
  - b) State and derive an expression for the principle of virtual work.
- a) Define the generalized force  $Q_k$ . Using that definition, show that,  $Q_k = -\frac{\partial V}{\partial q_k}$ 10 (ii)

$$Q_k = -\frac{\partial V}{\partial q_k}$$

Where V is potential and  $q_k$  are generalized coordinates.

b) Show that, for Cartesian coordinates  $x_i$  and general coordinates  $q_k$ ,

$$\frac{\partial \dot{x}_i}{\partial \dot{q}_k} = \frac{\partial \dot{x}_i}{\partial q_k}$$

- Consider a particle constrained to move on the inner surface of the cone (iii) 10 with half angle  $\alpha$ . Set up the Lagrangian and get the equations of motion.
- a. What is canonical momentum? For a Lagrangian given by (iv) 10  $L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - q\phi(x, y, z) + q(\vec{A} \cdot \vec{v})$ 
  - b. Calculate all the components of canonical momentum.
  - c. Is this canonical momentum a conserved quantity? Give reason to your answer.

#### Q3 Attempt any two

- Derive Euler's equation of motion for a rigid body .Discuss its cases for (i) spin, moment of inertia and angular velocity is at constant, zero and
- Obtain an equation of continuity in kinematics of moving fluid .Write (ii) 10 the equation if the fluid is incompressible
- Derive Bernoulli's theorem from conservation of linear momentum and (iii) 10 energy. Write the meaning of every term in its equation
- What is an Ideal fluid. Obtain the Eulers equation equation of motion (iv) 10 for an ideal fluid, state the assumptions

# Q4 Attempt any two

- What is an Anharmonic oscillator? Write down the general expression for restoring force indicating harmonic and anharmonic terms. Draw potential energy curves for (i)  $\propto < 0$ , K > 0 (ii)  $\propto < 0$ , K < 0. Infer on the confined motion in each case, If potential energy of Anharmonic oscillator is  $V(x) = K(\frac{x^2}{2} + \frac{\propto x^4}{2})$ . Where  $K \to spring\ constant$ ,  $\alpha \to anharmonic\ coefficient$ .
- (ii) What is logistic map? Find its fixed points, showthat the fixed point x=0 10 is an attractor for x < 1 and a repeller for x > 1.
- Obtain reduced Duffing's equation by suitable rescalling. Discuss numerical solutions of Duffing's equation for  $\gamma = 0.1$ , f = 0.5 graphically showing odd and even harmonics. Explain the mechanical hysteresis.
- (iv) Show that the undamped duffing's equation  $\ddot{x} + x + x^3 = f \cos wt$  can have 1 the exact solution  $x(t) = A_0 \cos \frac{wt}{3}$ . find the conditions under which such simple subharmonic solution occurs.

# Q5. Attempt any four

- (i) Define central force. Explain types of central forces.
  (ii) Interpret the various terms involved in the Coriolis's theorem
  (iii) Set up the Lagrangian for a simple pendulum. Using that derive the equation of motion.
- (iv) Define constraints. Give three examples
  (v) Consider a liquid flowing through horizontal tube of non-uniform cross-section. The pressure is 1600 N/m² at a point where the velocity of flow is 0.5 N/m² what is the Velocity of flow at a point where pressure is
- (vi) A rigid body consists of three particles of masses 2, 1 and 4 units located at (1, -1, 1), (2, 0, 2) and (-1, 1, 0) respectively. Determine the elements of the moment of inertia matrix for the rigid body.

1000 N/m<sup>2</sup>. Density of liquid is uniform and is equal to 1000 kg/m<sup>3</sup>.

- (vii) Write down three properties of deterministic chaos 05
- (viii) What is phase space diagram? Plot phase space diagram for one 05 dimentional damped oscillator and driven oscillator.