Time: 2.5 Hours **Total Marks: 75** N. B. 1) All questions are compulsory. 2) Use of a simple calculator is allowed. 3) Figures to the right indicate marks. Q. 1 Attempt any one from the following. Let $\Omega \subset \mathbb{C}$ is a domain in \mathbb{C} . If $u, v : \Omega \to \mathbb{R}$ are such that i) i) u_x, u_y, v_x, v_y exist and satisfy Cauchy Riemann equations ii) u_x , u_y , v_x , v_y are continuous on Ω , then prove that f(z) = u(x, y) + iv(x, y) is analytic in Ω . ii) If z_0 and w_0 are points in z and w plans respectively then show that (a) $\lim_{z \to z_0} f(z) = \infty$ if and only if $\lim_{z \to z_0} \frac{1}{f(z)} = 0$. (b) $\lim_{z \to \infty} f(z) = \omega_0$ if and only if $\lim_{z \to 0} f\left(\frac{1}{z}\right) = \omega_0$. (c) $\lim_{z \to \infty} f(z) = \infty$ if and only if $\lim_{z \to 0} \frac{1}{f\left(\frac{1}{z}\right)} = 0$. В Attempt any two from the following. i) If a function f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then show that its component functions u and v are harmonic in D. Use $\epsilon - \delta$ definition of limit to show that ii) $\lim [x + i(2x + y)] = 1 + i.$ iii) Let f be a analytic function throughout on a given domain D. If |f(z)|is constant on D, show that f(z) must be constant on D. (8) A) Attempt any one from the following. State and prove extension of Cauchy's Integral formula. i) Suppose that a function f is analytic throughout a disk $|z - z_0| < R_0$, ii) centered at z_0 and with radius R_0 . Then prove that f(z) has the power series representation $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$, $|z - z_0| < R_0$ where $a_n = \frac{f^n(z_0)}{n!}$ i.e. the series converges to f(z) when z lies in the stated open disk. (12)Attempt any two from the following. Let C denote a contour of length L and suppose that a function f(z) is piecewise continuous on C. If M is a non negative constant such that $|f(z)| \le M \ \forall z \in C$ at which f(z) is defined then prove that $\left|\int_{C} f(z)dz\right| \leq ML.$ Evaluate $\int_C \frac{\sin^6 z}{(z^{\pi})^3} dz$, where C: |z| = 2.

- iii) Find a linear fractional transformation that maps the points 1, i, -1 onto the points -1,0,1 on the real axis.
- A) Attempt any one from the following. (8)
 - i) If a series $\sum a_n (z - z_0)^n$ converges to f(z) at all points within the disc of convergence $|z - z_0| < R$ then prove that it is the Taylor series expansion for f centered at z_0 .

ii) Let C be a simple closed curve in the interior of the disc of convergence of the power series $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ and let g(z) be any function which is continuous on C. Then prove that the series $\sum_{n=0}^{\infty} g(z) a_n (z - z_0)^n$ can be integrated term by term over C and

$$\int_C g(z)S(z)dz = \sum_{n=0}^{\infty} \int_C g(z)a_n(z-z_0)^n dz.$$

B Attempt any two from the following.

(12)

- i) If the power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges for $z=z_1 (\neq z_0)$, then prove that it is absolutely convergent for each $z \in B(z_0, R_1)$ where $R_1 = |z_1 z_0|$.
- ii) If $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence R then find the radius of convergence of
 - (a) $\sum_{n=0}^{\infty} n^3 a_n z^n$ (b) $\sum_{n=0}^{\infty} a_n z^{3n}$ (c) $\sum_{n=0}^{\infty} a_n^3 z^n$.
- iii) Find Laurent series expansions in the domains: |z| < 1, 1 < |z| < 2, $2 < |z| < \infty$ for $f(z) = \frac{-1}{(z-1)(z-2)}$.
- Q. 4 A Attempt any three questions from the following.
 - i) Represent $|z z_0| = |z \bar{z_0}|$ as subsets of \mathbb{C} in the plane where $Im z_0 \neq 0$.
 - ii) Show that $z(t) = z_0 + tv$ and $Re((z z_0)i \bar{v}) = 0$ represents the same line in $\mathbb C$
 - iii) Find all roots of the equation $\cos z = 2$.
 - iv) Determine whether the set of points 0, -4, -2i, -1 3i lies on a circle.
 - V) Find residue of f(z) at z = 0 where $f(z) = \frac{\cot z}{z^4}$ (using the idea of power series division).
 - vi)
 Using Cauchy Residue theorem, evaluate $\int_C f(z)dz$ where $f(z) = \frac{1}{(z-1)^2(z-3)}$ and C is bounded by x = 0, x = 4, y = -1, y = 1.