[Total marks:100] [Time: 3 Hours] N.B.: (1) All questions are compulsory. (2) Figures to the right indicate full marks. (3) Use of logarithmic table/non-programmable calculator is allowed. Attempt any four of the following: 1. What is crystal field splitting? Explain with reference to tetrahedral 5 complexes. 5 Explain the following factors affecting crystal field splitting. B. il Nature of the ligands. iilposition of metal in transition series. Explain the term crystal field stabilization energy [CFSE]. Calculate CFSE 5 C. for d⁸ and d⁹ configurations in strong field octahedral complexes. 5 Discuss any five merits of crystal field theory. D. Explain Jahn-Teller distortions in octahedral complexes with suitable 5 E. example. Write a note on intensity of d-d transition as an evidence of covalent 5 F. bonding in metal complex. Attempt any four of the following: Discuss molecular orbital diagram of [Fe(H₂O)₆]³⁺ complex and give its 5 magnetic behaviour. 5 Write a note on Steric effect on the stability of metal complexes. B. 5 Explain charge transfer transitions in metal complexes. C. 5 Write a note on S_N1 mechanism in ligand substitution reaction of D. octahedral metal complexes. Distinguish between thermodynamic and kinetic stability in metal 5 E. complexes. Write a note on base hydrolysis in ligand substitution reaction of 5 F. octahedral metal complexes. Attempt any four of the following: Define organometallic compound. Write a note on multicentred electron A. deficient organometallic compound. Describe the method of preparation of organometallic compound by B. oxidative addition reaction. Write a note on Complex formation reactions of organometallic C. compounds. D. What is ferrocene? Explain structure of ferrocene according to valence bond theory. Write a note on any five chemical reactions of ferrocene.

E.

F.

Differentiate between homogeneous and heterogeneous catalysis.

5

4.	Atte	empt affour of the following:	
	A.		
	B.	Whare the different methods used for concentration of ore? Discuss in	
		detHydraulic Classifier Method.	
	C.		
	D.	Homert gases are isolated by Charcoal Adsorption methods.	
	E.	Gishe method of preparation and structure of following compound on the basis VSEPR Theory: i) X ₆	•
		ii) D ₃	
	F.	Wria note on importance of sodium potassium ion pump in biological	
		syst.	,
5.	Ans	wer thollowing:	
A.		Selothe correct option and complete the following statements: (any five	
	a.	CFS for strong field octahedral complexes with d ⁵ configuration is	
		(1) (1) 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
		a)-0+4P b)-12Dq+3P c)-24Dq+3P d)-20Dq+2P	
	b.	In Chedral complex, d-orbital of central metal degenerates into	
		enerlevels	
		a) 1 b) 3 c) 4 d) 2	
	c.	Jahleller distortions are more common among the octahedral complexes withdistribution of electrons.	
	d.	a) prortional b) symmetric b) asymmetric c) equal Cryl field splitting energy in square planar complex is denoted as	
		a) A b) \(\Delta \text{sp}\) b) \(\Delta \text{sp}\) c) \(\Delta \text{q}\) d) \(\Delta \text{o}\)	
	e.	is a strong field ligand.	
	5.7	a)S ² b) Cl c) CO d) F	
	f.	In tasition metal complexes, d-orbitals of the metal are affected by	
2.7			
0	^-	a)Mi b) Co-ions c)Ligands d)cations.	
	g.	Colcobserved for a complex is to the colour that is absorbed.	
		a)sar b) complimentary c)alike d)identical	
	h.	Electric spin resonance spectra of [IrCl ₆] ² -shows curve a)Dole hump b) smooth c) Serrated d) linear	
		a)Dole hump b) smooth c) Serrated d) linear	
В.		Statwhether true or false: (any five)	-
	a.	[Ti (O)6] 3+ is low spin complex.	5
	b.	Number of microstates for p ¹ configuration 21.	
	c.	Δl ₹is transition is Laporte allowed.	
	d.	Grod state term for 1s ¹ is ² S.	
	e.	Conexes with polydentate ligands are more stable than those with unidate ligands.	
	f.	Assative mechanism for ligand substitution reaction form seven	
		coomate intermediate with pentagonal bipyramidal structure.	
	g.	(2S4is called spin multiplicity.	

50964

C.	Fill in the blanks with correct alternatives given in the bracket: (any five)
	(M – C, increases, CH ₃ MgCl, oxidation, heterogeneous, reductive elimination, 2 C ₅ H ₆ , Mannich.)
	The essential requirement for an organometallic compound is the presence of at least one bond
	In preparation of organometallic compound by oxidative addition reaction, oxidation number of metal
	Condenses is the example of organometallic compound.
	Condensation of ferrocene rings with formaldehyde and amine is called as reaction.
	During nitration ferrocene undergoes
	Fe + \rightarrow (C ₅ H ₅) ₂ Fe + H ₂

	Match the	e column:	(Any five)	5
	Column A		Column B	
a.	Grinding	í.	Source of β radiation	
b.	Frothing agent	ii.	Incandescent electric bulbs	
c.	Acidic impurities	iii.	Iron Deficiency	
d.	Bessemerisation	iv.	Source of a radiation	
e.	Krypton Clathrates	v.	Pulverization	
f.	Argon	vi.	Skin pigmentation	
g.	Anaemia	vii.	Pine oil	
h.	Tryosinase	viii.	Used in treatment of cancer	
		ix.	Blister Copper	
		х.	Basic Flux	