(Time: 3 hours)

Total Marks: 100

	(5) 656	e of log table/ non-programmable calculator is allowed.	
Q.1	A)	Attempt any four of the following.	20
	A)	Draw a polarogram and label all the regions. Explain the role of supporting electrolyte used in polarographic analysis.	
	B)	Explain the term polarographic maxima with a neat diagram. How is it	N. D.
		eliminated?	
	C)	In a polarographic determination of nickel, the wave heights determined for a series of solutions were as follows:	
		Conc. of Ni ²⁺ (mM) 0.25 0.5 0.75 1.0 unknown	
		Wave height (mm) 31.8 64.0 95.8 128.0 70.0	
		Find the concentration Ni ²⁺ in unknown solution.	
	D)	With the help of labelled diagram, explain dropping mercury electrode.	
		Give any one of its limitation.	
	E)	What are the advantages and limitations of amperometric titrations?	
	F)	Give the basic difference between amperometry and voltammetry.	
		Explain the nature of amperometric titration curve when both titrand	
SEP	alb.	and titrant are reducible, and product is non-reducible.	
Q.2		Attempt any four of the following.	20
-	A)	Draw schematic diagram of gas chromatograph and explain any two	
		components.	
	B)	Explain electron capture detector in GC and write any one advantage.	
	C)	Give the applications of gas chromatography.	
S. Strange	D)	In GC, components of A and B were found to have retention time of 16.30 min and 13.30 min respectively on a 30 cm column. The peak width at base for components A and B were 1.00 min and 1.30 min respectively. Calculate the average number of plates in the column and plate height of the column.	
	E	Explain ion exchange capacity? How is it determined for cation	
	6	exchanger.	
	F)	Explain any two applications of ion-exchange chromatography in detail.	
Q.3.	3	Attempt any four of the following.	20
	A)	What is food processing? Explain the need of food processing?	
2	B)	Explain the Lane Eynon method for analysis of lactose in milk.	
Short	C)	What are objectives of pasteurization? Explain any two methods of pasteurization.	
	D)	Enlist the types of tea and explain any two in detail.	
	E)	Explain a method to estimate amount of calcium and magnesium in	
A A S		face powder complexometrically.	
	- 2		
2378	3/2	Page 1 of 3	

	F)	Write constituents of lipstick and any three properties of antiperspirant.
Q.4		Attempt any four of the following.
V. .	A)	Draw a neat labelled diagram of thermobalance and write the function of any three of its components.
	B)	Name the factors which influence the TG curve. Explain thermal decomposition of calcium oxalate.
	C)	Distinguish between TGA and DTA
	D)	Discuss thermometric titrations of: 1) HCl v/s NaOH 2) Boric acid v/s NaOH
	E)	What are the important applications of DTA?
	F)	Explain linearity and accuracy w.r.t. method validation.
Q.5	A)	Select the correct option and complete the following statements: 0: (any five)
		a) The diffusion of particles from bulk of the solution to the surface of
		DME due to the difference in concentration is called
		i) decomposition ii) electrical potential gradient
		iii) concentration gradient
		b) The electrode which has its own potential and cannot take up potential
		applied on it is called
		i) dropping mercury electrode ii) non-polarizable electrode
0		iii) rotating platinum electrode
		26'
\ \rangle		DME produces polarogram consisting of waves.
		i) three ii) four iii) two
		d) In polarography the time that lapses between the detachment of two successive drops of mercury is called
		i) drop time ii) dead time iii) inactive time
		e) In polarographic analysis the diffusion current is proportional to the concentration of
		i) supporting electrolyte ii) reducible ion iii) triton X-100
		f) When titrand is reducible but titrant and product are not in
		amperometric titration shows
		i) constant current till the equivalence point, then increases.
		ii) decrease in current till the equivalence point, then constant
	OF	iii) increase in current till the equivalence point, then decreases
	SO O	g) In amperometric titration of Ni ²⁺ determined by titrating with
.95		i) dimethyl glyoxime ii) silver nitrate iii) iodine
	T. T.	h) In rotating platinum electrode, the diffusion current is times
5,	900	larger than in case of DME.
	EP.	i) 100 ii) 400 iii) 20

State whether true or false: (any five) **Q.5** B) The retention time of the mobile phase is called dead time. a) b) Nitrogen gas is used as carrier gas in gas chromatography. If a component A is more soluble in the stationary phase than c) component B, then A will come out of the column later than B. d) Eddy diffusion is a band broadening factor in chromatography caused by the non-equal path of the solute molecules. Diatomaceous earth is the commonly used solid support material in gas e) chromatography. f) Standard solution of sodium nitrate is used in the determination of capacity of an anion exchanger. In ion exchange chromatography, density of the resin should be less g) than that of the water. **Q.5** Fill in the blanks with correct alternatives given in the bracket: 05 (any five) (Sensory, 8-hydroxy quinoline, dimethyl glyoxime, TiO₂, irradiation, caffeine, fructose, alkaline phosphatase, meats.) is a physical method of food preservation. enzyme is present in milk. b) _ is the major pharmacologically active compound in coffee. **c**) present in talcum powder has UV reflection properties. d) e) Honey contains large quantity of _____ than glucose. f) properties are detected by the five sense organs. In estimation of Zinc from deodorants and antiperspirants _____ is g) used as a complexing agent. Nitrates and nitrites are generally used for preservation of ____ 05 Match the columns: (any five) Thermometric titration a) Reference standard i) TGA thermobalance b) ΔH ii) Plateau in TGA c) Accuracy iii) SiC d) No loss in mass iv) Recovery study e) single pan V) vi) Thermocouple f) Analysis of polymer Application of DTA g) Ni-Cr Alloy vii)
