Paper / Subject Code: 24227 / Chemistry: Inorganic Chemistry(6 Units)

5

[Time: 3 Hours] [Total marks:100]

- N.B.: (1) All questions are compulsory.
 - (2) Figures to the right indicate full marks.
 - (3) Use of logarithmic table/non-programmable calculator is allowed

	(3) 03	se of logarithmic table/non-programmable calculator is allowed.	
1.	Atter	mpt any four of the following:	
	A.	Discuss the following symmetry elements with suitable example. i) Proper rotational axis of symmetry	5
		ii) Centre of symmetry	
	В.	Describe the point group assigned to following molecules;	5
		i) H ₂ O	200
		ii) HCl	
	C.	Draw molecular orbital diagram for CO molecule. Discuss its bond order and magnetic behaviour.	5
	D.	What is SALCs of atomic orbitals? Explain the formation of molecular orbitals in water molecule.	5
	E.	Discuss the correlation between bond angles and molecular orbitals with suitable example.	5
	F.	On the basis of molecular orbital theory, prove the triangular structure of trihydrogen ion. Why it is not linear?	5
2.	Atten	npt any four of the following:	
	A.	Define and explain crystal lattice and unit cell.	=
	B.	Write a note on conventional superconductors.	5
	C.	Define atomic packing factor. Show that packing factor for bcc lattice is 68%.	5
	D.	Give the applications of superconducting materials.	5
سکو	E.	Explain Schottky defect in ionic solid.	5
3	F.	What are fullerenes? Give a brief account of fullerenes.	5
3.	Atten	npt any four of the following:	
	O. A.	What are f block elements? Give the ideal and observed electronic	_
200	5	configuration of actinides.	5
42	B	What is lanthanide contraction? Discuss any two consequences of lanthanide	_
120	'She	contraction.	5
2	C.	Describe spectral properties of lanthanides.	5.
c	D.	Discuss 10 10 10 10 10 10 10 10 10 10 10 10 10	3.
100	96	i) ion exchange equilibria in lanthanide separation.	2
200	Oly .	ii) significance of the complexing agent for separation of lanthanides	3
5	È.	Explain the extraction process of lanthanides with respect to i) concentration ii) cracking of the minerals	5

65848

Give the separation of lanthanides by Tributyl phosphate (TBP) extraction

ii) cracking of the minerals.

method.

4.	Atten	npt any four of the following:	
	A.	What are non-aqueous solvents? give any two balance equations for each of	
		the following reactions of liquid Dinitrogen tetroxide;	
		a) Reactions with metals	
		b) Solvate formation	
	В.	Explain levelling effect of water on strong acids and strong bases.	
		5	
	C.	Write a note on allotropic forms of sulphur atom.	2
	D.	Describe the process involve in manufacture of sulphuric acid by contact 5	
		process. Discuss anomalous behaviour of fluorine	
	E.	Discuss anomaious ocuaviour of matrine.	
	F.	On the basis of toldie theory, explain the	
		interhalogen compound.	
_	Anax	ver the following:	
5.	Ansv	Select the correct option and complete the following statements: (any five)	;
F	٠.	Scient the correct option and complete the rolls and	
	a.	of symmetry is denoted by symbol σ	
		a) Centre b) Axis c) Plane d) Angle	
	b.	The axis with theorder of symmetry operations is called	
		subsidiary axis.	
		a) random b) moderate c) lowest d) highest	
	c.	The rotation axis Cn for ammonia molecule is	
		a) C ₄ b) C ₃ c) C ₂ d) C ₀	
	d.	The molecules having two atoms of the same elements are known as	
		diatomic molecules.	
		a) heteronuclear b) homonuclear c) thermonuclear d) isonuclear	
	e.	are regarded as polycentric.	
		a) atomic orbitals b) molecular orbitals	
	Ġ.	c) wave functions d) angular momentum	
I'm	f.	Total number of electrons in molecule is 15.	
0	.00	a) CO b) H ₂ O c) NO d) HCl	
,	9 g.	Molecular orbitals with higher energy give rise to molecular orbitals.	
of the second		a) non-bonding b) antibonding sc) bonding d) cross	
1960°	h.	In triangular ion, triply degenerate orbitals are labelled as	
8	3	a) a b) e c t d) £	
·	Chr.	To the die to the	
10	В.	State whether true or false: (any five)	5
1967	as	Niobium tin (Nb3Sn) is conventional superconductor.	
72	b.	In tetragonal crystal system $a = b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$.	
٠,	c.	The effect of ejecting out the flux lines of magnetic field is known as Meissner	
	Andrew -	effect.	
2	d.	The positions occupied by particles in the crystal lattice are called lattice point.	
,50	e.	The presence of frenkel defect in a crystal decreases the density of crystal.	
10	f.	Coordination number in simple cubic lattice is 4. Bravais shows that there can only be 14 different ways in which similar point	
	g.	can be arranged in three dimensional space	

The lattice vectors and interfacial angles collectively are known as lattice

constant.

Steric number of ABmEn

C.		Fill in the blanks with corr (spin and orbital moment, Pt, Gadolinite)	ect alterna , misch, the	ntives given in the bracket: (any five) orium, chelates, ultraviolet, increases	5				
	a. b.	involves removal of	xtraction o	due to the contribution of					
	d. e. f. g. h	metallurgical operations. Cerium glass is used in glare reducing spectacles due to absorption of							
D.		Match the column: (Any five)							
		Column A		Column B					
	a.	Aprotic solvents	i.	Allotrope of carbon					
	b.	Rhombic sulphur	ii.	ns ² np ⁵					
4	C.	Acetic acid	iii.	Catalyst used in manufacturing of H ₂ SO ₄					
3	d.	Ozone S	iv	m + n					
	e.	BrF &	-9·V.	Protic solvent					
	f.	Group 17 elements	vi.	Puckered ring					
100	g.	Platinised asbestos	vii.	Benzene	7. 3				

viii. Allotrope of Oxygen

Interhalogen compound

vii. Benzene

65848