## Paper / Subject Code: 32622 / Thermal Enginnering

05/06/2025 TE MECHANICAL SEM-V C-SCHEME TE QP CODE: 10086711

[Time: 03 Hours] [Total Marks: 80

## Note

- Question No.1 is compulsory.
- Solve ANY THREE questions from the remaining five questions.
- Figure to the right indicates full marks.
- Assume suitable data wherever required, but justify the same.

Marks

Q. 1 Solve ANY FOUR questions from following. (Each question carries 5 marks)

20

- a) State and explain Fourier's law of conduction.
- b) Discuss the relation between thermal boundary layer and hydrodynamic boundary layer with respect to variation in Prandtl number.
- c) Explain the concept of critical radius of insulation with reference to a cylinder.
- d) Define overall heat transfer coefficient and explain its significance.
- e) Explain knocking in SI engines and methods to suppress it.
- f) Explain the term Volumetric Efficiency in internal combustion engines.
- Q. 2 a) During the trial of a single-cylinder, four-stroke oil engine, the following results were obtained.

8

12

8

Cylinder diameter = 20 cm

Stroke = 40 cm

Mean effective pressure = 6 bar

Torque = 407 Nm

Speed = 250 rpm

Oil consumption = 4 kg/h

Calorific value of fuel = 43 MJ/kg

Cooling water flow rate = 4.5 kg/min

Air used per kg of fuel = 30 kg

Rise in cooling water temperature =  $45^{\circ}$ C

Temperature of exhaust gases =  $420^{\circ}$ C

Room temperature =  $20^{\circ}$ C

Mean specific heat of exhaust gas = 1 kJ/kg K

Specific heat of water = 4.18 kJ/kg K

Find the ip, bp and draw up a heat balance sheet for the test in kJ/h.

- b) A wall of a furnace is made up of inside layer of silica brick 120 mm thick covered with a layer of magnesite brick 240 mm thick. The temperatures at the inside surface of silica brick wall and outside surface of magnesite brick wall are 725°C and 110°C respectively. The contact thermal resistance between the two walls at the interface is 0.0035°C/W per unit wall area. If thermal conductivities of silica and magnesite bricks are 1.7 W/m°C and 5.8 W/m°C, calculate
  - (i) The rate of heat loss per unit area of walls, and
  - (ii) The temperature drop at the interface.
- Air at atmospheric pressure and  $40^{\circ}$ C flows with a velocity of U = 5 m/s over a 2 m long flat plate whose surface is kept at a uniform temperature of  $120^{\circ}$ C. Determine the average heat transfer coefficient over the 2 m length of the plate. Also find out the rate of heat transfer between the plate and the air per 1 m width of the plate. [The thermo-physical properties of air at 1 atm. and  $80^{\circ}$ C are  $v = 2.107 \times 10^{-5}$  m²/s, k = 0.03025 W/mK; Pr = 0.6965]. Use the following correlation:

 $\overline{Nu} = 0.664 (Re_L)^{1/2} (Pr)^{1/3}$ 

86711

| <b>b</b> ) | The air flow to a four cylinder, four-stroke oil engine is measured by means of a 5 cm diameter orifice having a coefficient of discharge of 0.6. During a test on the engine the following data were recorded: bore = 10 cm; stroke = 12 cm; speed = 1200 rpm; brake torque = 120 Nm; fuel consumption = 5 kg/h; calorific value of fuel = 42 MJ/kg; pressure drop across orifice is 4.6 cm of water; ambient temperature and pressure are 17 °C and 1 bar respectively. Calculate  i. the thermal efficiency on brake power basis; ii. the brake mean effective pressure and iii. the volumetric efficiency based on free air condition. | 12        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| a)         | The temperature of an air stream flowing with a velocity of 3 m/s is measured by a copper-constantan thermocouple which may be approximated as a sphere of 2.5 mm in diameter. Initially the junction and air are at a temperature o f 25°C. The air temperature suddenly changes to and is maintained at 215°C. Determine the time required for the thermocouple to indicate a temperature of 165°C. The thermal junction properties are: $\rho = 8750 \text{ kg/m}^3$ , $c = 380 \text{ J/kg}^\circ\text{C}$ , k (thermocouple) = 28 W/m°C and h = 145 W/m²°C.                                                                           | 127. 12 B |
| <b>b</b> ) | The flow rates of hot and cold water streams running through a parallel flow heat exchanger are 0.2 kg/s and 0.5 kg/s respectively. The inlet temperatures on the hot and cold sides are 75°C and 20°C respectively. The exit temperature of hot water is 45°C. If the individual heat transfer coefficients on both sides are 650 W/m <sup>2</sup> °C, calculate the area of the heat exchanger.                                                                                                                                                                                                                                          | 12        |
| a)         | Calculate the shape factors for the configurations shown in the Fig.  A tube with cross-section of an equilateral triangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5         |
| <b>b</b> ) | Explain Willan's line method for measurement of frictional power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5         |
| c)         | Illustrate the variation of temperature of hot fluid and cold fluid from inlet to outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5         |
| 5          | in case of a parallel flow heat exchanger and counter flow heat exchanger.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J         |
| d)         | Differentiate between the efficiency and effectiveness of an extended surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5         |
|            | S' A' A' A' A'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| <b>a</b> ) | Explain Nucleate boiling and Film boiling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5         |
| <b>b</b> ) | Why is short ignition delay favourable for CI engines whereas it is undesirable for an SI engine?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5         |

Q. 4

Q. 5

State and explain Fick's Law of diffusion.

Explain different types of emission control norms implemented in order to control the air pollution due to IC engines.

5

5