Paper / Subject Code: 32621 / Mechanical Measurements & Controls

11/11/2024 Mech/Sem-V C - Scheme - MMC QP CODE 10066831

Time: 3 Hours Total Marks: 80

- **N.B:** 1) Question No. 1 is *compulsory*.
 - 2) Attempt any *THREE* questions out of remaining *FIVE* questions.
 - 3) Assume suitable data wherever necessary.
 - 4) Use of Graph paper is allowed.
 - 5) Figures to the right indicate full marks.

1. Answer the following questions (any Four).

20

- i) Differentiate between systematic errors and random errors.
- ii) How can flatness be checked with the help of an optical interferometer?
- iii) Define: Reproducibility, Hysteresis, Threshold, Range and Span of measuring instruments.
- iv) Illustrate the working principle of nozzle flapper for displacement measurement.
- v) Explain open loop and closed loop control systems.
- vi) Using Routh's criterion examine the stability of a control system whose characteristic equation is $S^5 + 2S^4 + 3S^3 + 4S^2 + 5S + 6 = 0$
- 2. (A) Derive an expression for "Two-wire Method" for effective diameter measurement of a 10 screw thread
 - (B) Calculate the limits, tolerances and allowances on a 25 mm shaft and hole pair. 10 Designated H7/g6 to get precision fit. The fundamental tolerances is calculated by following equations:

$$i = 0.4533 D + 0.001D micron$$

The following data is given:

- a) Upper deviation of shaft = -2.5 $D^{0.4}$
- b) 25 mm falls in the diameter step of 18 30 mm
- c) IT7 = 16i
- d) IT6 = 10i
- e) Wear allowance = 10% gauge tolerance
- **3.** (A) With neat sketch, explain the constructional features and working of

10

- i) LVDT
- ii) Parkinson's Gear Tester
- **(B)** Draw the Root-Locus of the system having

10

$$G(s)H(s) = \frac{K}{S(S+1)(S+3)(S+4)}$$

66831

- 4. (A) Define desired input, modifying input and interfering input for measuring instruments with suitable examples. Also suggest the methods to minimize the effect of modifying and interfering input.
 - **(B)** A system has transfer function given by

10

$$\frac{C_{(s)}}{R_{(s)}} = \frac{100}{s^2 + 15s + 100}$$

Determine, peak time, percent overshoot, settling time and rise time.

5. (A) With neat sketch, explain the constructional features and working of

10

- i) Ultrasonic Flow Meter
- ii) Ionization Gauge
- (B) Reduce the given block diagram to a its canonical form and hence obtain equivalent transfer function, $\frac{C(s)}{R(s)}$.

6. Write short note on (any Four)

20

- i) Interference Fit
- ii) Strain Gauge based load cell
- iii) Frequency Domain Specifications
- iv) Tomlinson Surface Tester
- v) Static Calibration
- vi) RTD

\$\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac}\fint}}}}}{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac}\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac