Paper / Subject Code: 41221 / Engineering Mathematics - IV

1T01434 - S.E.(Mechanical) Engineering)(SEM-IV)(Choice Base Credit Grading System) ((R-20-21) (C Scheme) / 41221 -

Engineering Mathematics - IV

QP CODE: 10014587 DATE: 08/12/2022

(3 Hours) [Total Marks: 80]

N.B.: 1) Question No. 1 is **Compulsory**.

- 2) Answer any THREE questions from Q.2 to Q.6.
- 3) Figures to the right indicate full marks.
- Q.1 (a) What is the value of $\int_{0}^{1+i} (x-y+ix^2) dz$ along the line from z=0 to z=1+i (5)
 - (b) Find a and b such that $\vec{F} = (axy + z^3)i + x^2j + bz^2xk$ is irrotational (5)
 - (c) A random variable X has probability mass function $p(x) = kx^3$; x=1,2,3,4 then find the value of k, mean, variance. (5)
 - (d) Find the probability that at most 4 defective bulbs will be found in a box of 200 (5) bulbs if it is known that 2% of the bulbs are defective.

(6)

(6)

Q.2 (a) Find the rank correlation coefficient between X and Y;

X	17	13	15	16	6	11	14	9.5	7	12
Y	36	46	35	24	12	18	27	22	2	8

(b) A random variable has the MGF $M_X(t) = \frac{3}{3-t}$. Find mean and Variance of X.

- (c) Obtain Laurent's series expansions of $f(x) = \frac{z-1}{z^2 2z 3}$; |z| > 3. (8)
- Q.3 (a) A coin is tossed. If it turns up heads two balls are drawn from urn A otherwise two ballsare drawn from urn B. Urn A contains 3 black and 5 white balls. Urn B contains 7 blackand one white ball. What is the probability that urn A was used, given that both ballsdrawn are black?
 - (b) Fit a straight line y = a + bx into the given data.

 x:
 10
 20
 30
 40
 50

 y:
 22
 23
 27
 28
 30

(c) Prove that $\overline{F} = (6xy^2 - 2z^3)i + (6x^2y + 2yz)j + (y^2 - 6z^2x)k$ is irrotational. Find scalar potential of \overline{F} . Hence find the work done of moving particle from (1,0,2) to (0,1,1).

QP CODE: 10014587

- **Q.4** (a) Using Green's Theorem evaluate $\int_c (xy + y^2) dx + x^2 dy$ and c is closed curve of the region bounded by y = x and $y = x^2$.
 - (b) A machinist is expected to make engine parts with axle diameter of 1.75 cm. A random sample of 10 parts shows a mean diameter of 1.85 cm, with a S.D of 0.1 cm. Based on this sample, would you say that the work of the machinist is inferior?
 - (c) A random variable X follows a normal distribution with mean 14 and standard deviation 2.5 find (1) P[X<8] (2) P[X>18] (3) P[12<X<15] Given: Area between z=0 and z=2.4 is 0.4918; Area between z=0 and z=1.6 is 0.4452; Area between z=0 and z=0.8 is 0.2882; Area between z=0 and z=0.4 is 0.1554.
- Q.5 (a) The standard deviation from two random samples of sizes 9 and 13 are 1.99 and 1.9. Can the samples be regard as drawn from normal population with same standard deviation? $(F_{(8,12)}(0.025) = 3.51, F_{(12,8)}(0.025) = 4.20)$
 - (b) Use Gauss's Divergence Theorem to evaluate $\iint_{S} \overline{N} \cdot \overline{F} \, ds$, where $\overline{F} = 4xi 2y^2j + z^2k$ and S is region bounded by $x^2 + y^2 = 4$, z = 0, z = 4.
 - (c) Obtain both Line of regressions for the data given below Given $\sum X = 250$; $\sum Y = 300$; $\sum XY = 7900$; $\sum X^2 = 6500$; $\sum Y^2 = 10000$ and n = 10 (in usual notation)
- **Q.6** (a) Evaluate Value of $\int_{c} \frac{\sin 2z \, dz}{(z + \pi/3)^4} dz$ is where C: |z| = 2 (6)
 - (b) The following data find the correlation coefficient to marks obtained by 11 students in 2 tests, one held at the beginning of the year and the other at the end of the year after intensive coaching:

Test 1	19	23	16	24	17	18	20	18	21	19	20
Test 2	17	24	20	24	20	22	20	20	18	22	19

(c) A die was thrown 132 times and the following frequencies were observed. (8)

Frequency 15 20 25 15 29 28	
13 20 23 13 27 28	132

Test the hypothesis that the die is unbiased at 5% level of significance.

(Given: Table value of χ^2 at 5% level of significance and 5 degree of freedom is 11.07)
