Duration - 3 Hours Total Marks : 80

N.B.:- 1. Question no 1 is compulsory.

2. Attempt any THREE questions out of remaining FIVE questions.
Q. 1 a) Write the dual of the given LPP

Maximize $\mathrm{Z}=4 x_{1}+9 x_{2}+2 x_{3}$
Subject to: $2 x_{1}+3 x_{2}+2 x_{3} \leq 7,3 x_{1}-2 x_{2}+4 x_{3}=5, x_{1}, x_{2}, x_{3} \geq 0$.
b) If X is a Random Variable with probability density function

$$
f(x)=\left\{\begin{array}{l}
k x ; 0 \leq x \leq 2 \tag{5}\\
2 k ; 2 \leq x \leq 4 \\
6 k-k x ; 4 \leq x \leq 6
\end{array}\right.
$$

Find k, expectation and $\mathrm{P}(1 \leq \mathrm{x} \leq 3)$.
A tyre company claims that the life of the tyres have mean $42,000 \mathrm{kms}$ with
c) standard deviation of $4,000 \mathrm{kms}$. A change in the production process is believed to a result in better product.A test sample of 81 new tyres has a mean life $42,500 \mathrm{kms}$. Test at 5% level of significance that the new product is significantly better than the old one.
d) Find the minimal polynomial of $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$. Is A derogatory?
Q. 2 a) Use Big-M method to solve the following LPP

$$
\begin{align*}
& \text { Minimize } z=2 x_{1}+x_{2} \tag{6}\\
& \text { subject to } \quad 3 x_{1}+x_{2}=3, \\
& 4 x_{1}+3 x_{2} \geq 6, \quad \\
& x_{1}+2 x_{2} \leq 3, \quad x_{1}, x_{2} \geq 0 \tag{6}
\end{align*}
$$ $[3 / 1 / 2]$

b) Find e^{A} and 4 if $A=\left[\begin{array}{ll}3 / 2 & 1 / 2 \\ 1 / 2 & 3 / 2\end{array}\right]$.
c) Verify Green's theorem for $\int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the closed curve given by $y=x^{2}, y=\sqrt{x}$.
Q. 3 a) Prove that $\overline{\boldsymbol{F}}=2 x y z^{2} i+\left(x^{2} z^{2}+z \cos y z\right) j+\left(2 x^{2} y z+y \cos y z\right) k$ is a conservative field. Find ϕ such that $\bar{F}=\nabla \phi$. Hence find the work done in moving an object in this field from $(0,0,1)$ to $\left(1, \frac{\pi}{4}, 2\right)$.
b) The standard deviations calculated from two random samples of sizes 9 and 13 are 1.99 and 1.9 . Can the samples be regard as drawn from the normal populations with same standard Deviations.
(Given: $F(0.025)=3.51$ with d. f. $8 \& 12$ and $F(0.025)=4.20$ with d. f. $12 \& 8$.)
c) Find the index, rank, signature and class of the Quadratic Form $x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}$ by reducing it to canonical form using congruent transformation method.
Q. 4 a) Evaluate $\iint_{S} \bar{F} \bullet d \bar{S}$ where $\bar{F}=(2 x y+z) i+y^{2} j-(x+3 y) k$ and S is the closed surface bounded by $x=0, y=0, z=0,2 x+2 y+z=6$.
b) Verify Cayley-Hamilton theorem for $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]$ and hence find $2 A^{4}-5 A^{3}-7 A+6 I$.
c) A sample of 400 students of under-graduate and 400 students of postgraduate classes was taken to know their opinion about autonomous colleges. 290 of the under-graduate and 310 of the post-graduate students favoured the autonomous status.Use chi-square test and test that the opinion regarding autonomous status of colleges is independent of the level of classes of students.
Q. 5 a) Prove that $\nabla \times\left[\frac{\bar{a} \times \bar{r}}{r^{3}}\right]=\frac{-\bar{a}}{r^{3}}+\frac{3(a \cdot r) r}{r^{5}}$
b) Show that the matrix $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3\end{array}\right]$ is diagonalizable and hence find the transforming matrix and diagonal matrix.
c) Ten school boys were given a test in statistics and their scores were recorded. They were given a month special coaching and a second test was given to them in the same subject at the end of the coaching period .Test at 5% level of significance, if the marks given below give evidence to the fact that the students are benefited by coaching.
$\begin{array}{lllllllllll}\text { Mark in test 1: } & 70 & 68 & 56 & 75 & 80 & 90 & 68 & 75 & 56 & 58\end{array}$ $\begin{array}{llllllllllll}\text { Mark in test 2: } & 68 & 70 & 52 & 73 & 75 & 78 & 80 & 92 & 54 & 55\end{array}$
Q. 6 a) In a sample of 1000 cases, the mean of a certain test is 14 and Standard

Deviation is 2.5. Assuming the distribution to be normal, find 1] how many students score between $12 \& 15$.
2] how many score above 18 .
b) Evaluate by Stoke's theorem $\int_{C} x y d x+x y^{2} d y$, where C is the square in the $x y$-plane with vertices $(1,0),(0,1),(-1,0),(0,-1)$.
c) Using duality solve the following L.P.P.

$$
\begin{align*}
& \text { Minimise } z=0.7 x_{1}+0.5 x_{2} \tag{8}\\
& \text { subject to } x_{1} \geq 4, x_{2} \geq 6, x_{1}+2 x_{2} \geq 20,2 x_{1}+x_{2} \geq 18 \text {, } \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{align*}
$$

