14/11/2024 MECH SEM-III C SCHEME SOM QP CODE: 10066930

3 Hours Total Marks: 80

- Question-1 is compulsory.
- Answer any three from remaining five questions.
- Assume any suitable data, wherever required, but justify the same. Assumptions
 made should be clearly stated.
- Illustrate the answers with sketches, wherever required.
- 1 Answer any four of the following:
 - **a.** A material has Young's modulus of 2×10^5 N/mm² Poisson's ratio of 0.32, determine rigidity (05) and Bulk modulus of the material.
 - **b.** A rectangular beam 300mm deep is simply supported over a span 4m. What uniformly distributed load the beam can carry if the bending stress is not to exceed 120MPa. Take I $=8\times10^6$ mm⁴.
 - c. A water main 800mm diameter contains water at a pressure head of 100m. If the weight of water 10kN/m³, find the thickness of metal required for the water main if permissible stress in metal is 20N/mm².
 - d. State the assumptions made in the analysis of struts and columns by Euler's buckling theory. (05)
 - e. Draw shear stress distribution for I section, T section and rectangular section. (05)
 - **f.** Establish the relationship between shear force, bending moment and rate of loading. (05)
 - 2 a) A solid circular shaft has to transmit 300 kW power at 100 rpm. If the shear stress is not to exceed 80 N/mm², find the diameter of the shaft. If this shaft were replaced by a hollow one whose internal diameter is 0.6 of its external diameter, What will be the % of saving of material. The length, material and shear stress are kept same.
 - **2 b)** A composite bar is made of Steel and Aluminium is held between two supports as shown in fig 1. The bars are stress free at temp 38°C. What will be the stress in the two bars when temperature decreased to 21°C, the supports come near to each other by 0.1mm. Take Es = 210 GN/m^2 , $E_{Al} = 100 \text{ GN/m}^2$, $\alpha_s = 11.7 \times 10^{-6} / ^{\circ}\text{C}$ and $\alpha_{Al} = 23.4 \times 10^{-6} / ^{\circ}\text{C}$

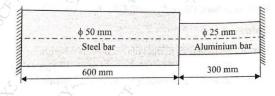
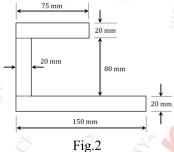
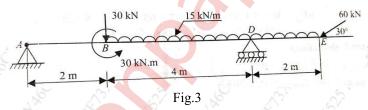
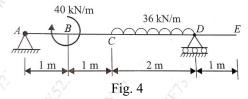



Fig.1


3 a) A T section (Flange =200mm×10mm, web=10mm×240mm) is used as struts which is 6m (10) long, one end is hinged and other end is fixed. Determine the buckling load using Euler's formula. E=200×10³ N/mm²

3 b) Figure 2, shows a C section subjected to a shear force of 18 kN intensity. Draw the shear stress distribution diagram across the section and obtain the shear stress values at all the salient points including the neutral axis.


4 a) A cylindrical vessel of 1.5m diameter and 4m long is closed at ends by rigid plate. It is subjected to an internal pressure of 3N/mm^2 . If the maximum circumferential stress is not to exceed 150N/mm^2 , find the thickness of shell. Also change in diameter length and volume of the shell. Take $E=2\times10^5$ N/mm², 1/m=0.25

4 b) Draw shear force and bending moment diagram for beam shown in fig. 3 (10)

5 a) The beam has a T-shaped cross-section with a top flange measuring 90 mm × 20 mm and a (10) web measuring 20 mm × 90 mm. The beam is a simply supported on a span of 8m and subjected to 1200N/m over entire span. Determine bending stresses in compression and tension, also sketch the bending stress distribution.

5 b) Find the slope at A and deflection at a point C for the beam loaded shown in fig.4. Assume (10) moment of inertia and modulus of elasticity as $I=20\times10^6$ mm⁴ and E=200 kN/mm².

6 a) Two mutually perpendicular plane of an element subjected to $\sigma_x = 100 \text{MPa}$ (tensile) and σ_y (10) = 40 MPa (compressive) and shear stress = 30 MPa. Locate the principal planes and determine the principal stresses, maximum shear stresses using Mohr's circle verify answers with analytical method.

6 b) Determine instantaneous stress and deformation of a rod of length 1.2m and the diameter (10) 8mm. If a mass of 90kg falls through a height f 15cm and strike the bottom of the rod. The rod is freely suspended and fixed at the top. Take E=210GPa.