[Max Marks: 80] **Duration: 3 hrs**

- N.B.: (1) Question No 1 is Compulsory.
 - (2) Attempt any THREE questions out of the remaining FIVE.
 - (3) All questions carry equal marks.
 - (4) Assume suitable data, if required and state it clearly.
- Q.(1) Explain the following:
 - **Dynamic Range Compression**
 - (ii) Edge Detection Operators
 - (iii) Vector Quantization
 - (iv) Erosion and Dilation
- Q.2 (a) For given 5x5 image compute the De, D4, D8 and Dm distances between pixels p and q. Let V be the set of gray levels to define the similarity criteria, where $V = \{2, 3\}$.

	1	2	1	2	3 (q)
)	3	1	0	3	1
	2	3	2	0	2
	0	3	2	2	3
^	2 (p)	1	3	2	3

- (b) What are point-processing techniques for enhancement? Explain Contrast Stretching in detail. [10]
- Q. 3 (a) Explain filtering in the spatial domain.
 - (b) Equalize the given histogram and plot the new equalized histogram. Show necessary Steps. [10]

Gray Level	0	1	2	3	4	5	6	7
No. of Pixels	70	100	40	80	60	40	08	02

- Q.4 (a) Explain Homomorphic filtering with the help of a block diagram.
 - (b) Compute the Hadamard transform of the given image:

1	2	3	4
1	2	1	2
4	3	2	1
2	1	2	1

- Q.5 (a) Consider an 8-pixel line of gray scale data: [12, 12, 13, 13, 10, 13, 57, 54] which has been uniformly quantized with 6-bit accuracy. Construct its 3-bit IGS code. Compute the RMS error and rms signal to noise ratio for the decoded IGS code.
 - (b) Explain Lossless predictive coding with the help of suitable encoder and decoder models.
- Q.6 Write short notes on **ANY TWO** of the following:
 - (a) Chain codes and Shape Number
 - (b) Hit or Miss Transform
 - (c) Graph Theoretic Technique

[10]

[10]

[10]

[10]

[20]