Paper / Subject Code: 41024 / Automata Theory

21/05/2025 SE IT SEM-IV C-SCHEME AT QP CODE: 10083247

Duration: 3 Hrs		Max. Marks: 80

NB:

- 1. Question No. 1 is compulsory and solve any THREE questions from remaining questions
- 2. Assume suitable data if necessary
- 3. Draw clean and neat diagrams

Q1.		Answer the following questions	Marks
	a.	Explain any 5 closure properties of Regular Languages	5
	b.	Convert the given grammar Right Linear Grammar to Left Linear Grammar S→bB, B→bC aB b, C→a	5
	c.	Construct Right linear grammar for RegEx- 00* (01+0)*	5
	d.	Write RegEx and draw FA for all strings over {0, 1} containing the sequence 011	5
Q2.	a.	Construct NFA for accepting the input string that contains either the keyword 000 / 010 and convert this to equivalent DFA.	10
	b.	Design a Moore machine that will read the sequence made up of letters $\Sigma = \{a,e,i,o,u\}$ it will give same sequence except in those sequence where 'i' is directly follow 'e', it will give output 'u'. hint [a e i e \rightarrow a e i u]	10
Q3.	a.	Construct NFA with E moves for "zero or more number of 0's followed by zero or more number of 1's followed by zero or more number of 2's. Convert this DFA.	10
450	b	Convert the following CFG to CNF	10
	at.	G: $S-ABA$, $A\rightarrow aA \mid bA \mid \lambda$, $B\rightarrow bB \mid aA \mid \lambda$	
Q4	a.	What is Ambiguous Grammar, Explain with example.	10
	b. 45	Let G be the grammar. Find the leftmost derivation, rightmost derivation and parse tree for the string 001222. $S \rightarrow 0S \mid 1A \mid 2B \mid \epsilon$ $A \rightarrow 1A \mid 2B \mid \epsilon$ $B \rightarrow 2B \mid \epsilon$	10
Q5	a.	Design PDA for odd length palindrome, let $\Sigma = \{0,1\}$, L= $\{W \mid X \mid W^R\}$	10
	b.	Design Turing Machine for $L=\{0^n 1^n \text{ where } n>=1\}$	10
Q6		Write short notes on (any Four) a) Applications of Automata Theory b) Chomsky Hierarchy c) Power and limitations of PDA d) Halting Problem.	20
		e) Variations of Turing machine ***********************************	