Paper / Subject Code: 41021 / Engineering Mathematics-IV

1T01234 - S.E.(Information Technology Engineering)(SEM-IV)(Choice Base Credit Grading System) (R- 19)

(C Scheme) / 41021 - Engineering Mathematics-IV

QP CODE: 10040268 DATE: 08/12/2023

Time: 3 hrs Marks: 80

Note:

1) Q. No. 01 is compulsory.

- 2) Solve any three from Q. No. 02 to 06.
- 3) Numbers to the right indicate full marks.
- 4) Use of statistical tables is allowed.
- Q. 1. Solve.

a) If
$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 find the sum and product of Eigen values A .

- b) Integrate the function $f(z) = z^2$ from A(0, 0) to B(1, 1) along straight line AB.
- c) Find the Z-Transform of $(k) = a^k$, k < 0.
- d) A transmission channel has a per-digit error probability p = 0.01. Calculate the probability of more than 1 error in 10 received digits using Poisson distribution.

Q. 2.

Find the Eigenvalues and Eigenvectors of the matrix
$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$
.

- b) Find the Z-Transform of $Cos\left(\frac{k\pi}{4} + \alpha\right)$ $k \ge 0$.
- c) Use the dual simplex method to solve the LPP Min,. $Z = 2X_1 + 2X_2 + 4X_3$ $2X_1 + 3X_2 + 5X_3 \ge 2$, $3X_1 + X_2 + 7X_3 \le 3$, $X_1 + 4X_2 + 6X_3 \le 5$ $X_1, X_2, X_3 \ge 0$ 8

Q. 3.

a) Evaluate
$$\int_C \frac{z^2}{(z-1)(z-2)} dz$$
 Where C is a circle $|z-1|=1$.

b) Verify Caley-Hamilton theorem and hence find A^{-1} and A^4 where A =

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}.$$

c) Solve the LPP by Big -M method Maximize $Z = 3X_1 - 2X_2$ subject to $2X_1 + X_2 \le 2$, $X_1 + 3 \ge 3$, $X_1, X_2, \ge 0$.

40268 Page 1 of 2

Paper / Subject Code: 41021 / Engineering Mathematics-IV

Q. 4.

- a) Find inverse Z transform of $F(z) = \frac{1}{(z-1)(z-3)}$ for i) |z| < 1, ii) 1 < |z| < 3.
- b) The following data represent the marks obtained by 12 students in two tests, one held before the coaching and the other after the coaching.

Test II : 63, 70, 70, 81, 54, 29, 21, 38, 32, 50, 70, 80.

Do the data indicate that the coaching was effective in improving the performance of the students?

Find all possible Laurent's series expansions of the function $f(z) = \frac{1}{(z-1)(z+2)}$ about z = 0 indicating the region of convergence in each case.

Q. 5.

a) Determine all basic solutions to the following problem

$$Max. Z = x_1 - 2x_2 + 4x_3$$

\$ 6

6

8

6

6

$$x_1 + 2x_2 + 3x_3 = 7$$
, $3x_1 + 4x_2 + 6x_3 = 15$, $x_1, x_2, x_3 \ge 0$.

- b) Using Normal distribution, find the probability of getting 55 heads in the toss of 100 fair coins.
- c) Solve the NLPP

Optimize
$$Z = 10x_1 + 8x_2 + 6x_3 + 2x_1^2 + x_2^2 + 3x_3^2 - 100$$

Subject to $x_1 + x_2 + x_3 = 20$, x_1 , x_2 , $x_3 \ge 0$.

Q. 6

a) Show that the given matrix is diagonalizable and hence find diagonal form and

transforming matrix where
$$A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$$
.

- b) Of the 64 off springs of a certain cross between guinea pigs 34 were red, 10 were black and 20 were white. According to the generic model these numbers should be in the ratio 9:3:4. Use 2- test to check whether the data are consistent with the model.
- c) Max. $Z = 4x_1 + 6x_2 x_1^2 x_2^2 x_3^2$, Subject to $x_1 + x_2 \le 2$ and $2x_1 + 3x_2 \le 8$ 12, $x_1, x_2 \ge 0$ by K-T condition.

40268

Page 2 of 2