02/06/2025 SE IT SEM-III C-SCHEME EM-III QP CODE: 10081973

TIME: 03 HOURS MAX. MARKS: 80

Note:

- 1. Question **No. 1** is compulsory.
- 2. Attempt any three questions out of remaining five questions.
- 3. Assume suitable data wherever necessary.
- 4. Figures to right indicate full marks.

Q.1 Answer the following (Any for	Q.1	Answer	the	follow	ing ((Any	four
-----------------------------------	-----	--------	-----	--------	-------	------	------

Marks

a. Find the Laplace transform of $t \sin^3 t$.

05

b. Calculate the Spearman's rank correlation coefficient R.

0:

X	10	12	18	18	15	40
Y	12	18	25	25	50	25

c. Find the constants a, b, c, d, e if $f(z) = (a x^3 + bx y^2 + 3x^2 + cy^2 + x) + i (dx^2y - 2y^3 + e x y + y)$ is analytic.

05

d. Find inverse Laplace transform of $tan^{-1} \left(\frac{s+a}{h} \right)$.

05

Q.2 a. Evaluate by using Laplace transform of $\int_0^\infty \left(\frac{\sin 3t + \sin 2t}{te^t}\right)$ dt.

06

b. If the mean of the following distribution is 16 find m, n and variance

06

X : 8 12 16 20 24 P(X=x) : $\frac{1}{8}$ m n $\frac{1}{4}$ $\frac{1}{12}$

08

C. Obtain the Fourier expansion of $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in $(0, 2\pi)$ Hence show that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2}$

UC

Q.3 a. Find the analytic function f(z) = u + i v in terms of z if $u + v = e^x (\cos y + \sin y) + \frac{x - y}{x^2 + y^2}$.

06

b. Find the coefficient of regression and hence the equations of the lines of regression for the following data

06

- X
 78
 36
 98
 25
 75
 82
 90
 62
 65
 39

 Y
 84
 51
 91
 60
 68
 62
 86
 58
 53
 47
- c. Using convolution theorem Find the inverse Laplace transform of

08

$$\frac{1}{(s^2+4s+13)^2}$$

Q.4 a. Obtain Fourier series of $f(x) = |\sin x|$ in $((-\pi, \pi))$.

- 06
- b. If X denotes the outcome when a fair die is tossed, find the moment generating function of x and hence find the mean and variance of X.
- 06
- c. Evaluate by using Laplace transforms of $\int_0^\infty e^{-t} \left(t \int_0^t e^{-4u} \cos u \, du\right) dt$. **08**
- Q.5 a. Find the orthogonal trajectories of family of curves $3 x^2y + 2x^2 y^3 2y^2 = c$.

06

b. Find the inverse Laplace transform of $\frac{s+29}{(s+4)(s^2+9)}$.

- 06
- c. Fit a second-degree parabolic curve to the following data and estimate the

08

Production in 1982

T TO GGO CHOTT III	1 1 7 0 2 .			V, /		/_ V		
Year (X)	1974	1975	1976	1977	1978	1979	1980	1981
Production	12	14 🔟	26	42	40	50	52	53
(y)(in	100,		2	2	10		. ~	?
tons)	5	6	A		7	1	45	1

- **Q.6** a. Obtain half range Sine series for $f(x) = x x^2$ in $0 \le x \le 1$. Hence show that $\frac{\pi^3}{32} = \frac{1}{1^3} \frac{1}{3^3} + \frac{1}{5^3} \frac{1}{7^3} \dots$
 - b. Show that the function $v = e^{2x}(y \cos 2y + x \sin 2y)$ is harmonic. **06**And find its corresponding analytic function f(z) = u + iv.
 - c. Find the value of k if the function $f(x) = k x^2 (1 x^3)$, $0 \le x \le 1$ of the value of k if the function $f(x) = k x^2 (1 x^3)$, $0 \le x \le 1$ otherwise.

 Is a probability density function. Also find $p(0 \le x \le \frac{1}{2})$ find mean and variance.