Paper / Subject Code: 51424 / Principle of Communication

June 12, 2024 02:30 pm - 05:30 pm 1T01233 - S.E.(Information Technology Engineering)(SEM-III) (Choice Base Credit Grading System) (R- 19) (C Scheme) / 51424 - Principle of Communication QP CODE: 10056409

Time: 3 Hours Marks: 80

- N.B. (1). Question No.1 is compulsory.
 - (2). Out of remaining attempt any three.
 - (3). Assume & mention suitable data wherever required.
 - (4). Figures to right indicates full marks.

Q.1. Solve any four \bigcirc [20]

- a). The signal power & noise power measured at the input of an amplifier are $150 \,\mu w \, \& \, 1.5 \,\mu w$ respectively. If the signal power at the o/p is 1.5w and noise power is 40mw, calculate amplifier noise factor & noise figure.
- b). Calculate the percentage power saving for DSB-SC signal for percentage modulation of a) 100 % b) 50 %
- c). Compare PAM, PWM & PPM
- d). State advantages of digital transmission.
- e). Explain in brief different types of communication channels.
- f). Explain the principle of reflection and refraction.
- Q.2 a) Explain FDM with neat block diagram . [10]
 - b). State and prove the following properties of Fourier transform with example
 - i) Convolution in time domain ii) Time scaling [10]
- Q.3. a) In an AM radio receiver, loaded Q of an antenna circuit at the input to the mixer

 Is 100.if the intermediate frequency is 455 KHz. calculate the image frequency &

 Its rejection at 1 MHz

 [10]
 - b). With the help of neat circuit diagram explain varactor diode method of FM Generation

[10]

56409 Page **1** of **2**

Paper / Subject Code: 51424 / Principle of Communication

Q.4	a). With reference to sky wave propagation explain	13/2 09/2.
	(i) virtual height (ii) critical Frequence	y A
	(iii) maximum usable frequency (MUF) (iv) skip distance	
	(v) Skip Zone	[10]
	b). Derive the mathematical expression for FM with neat sketch.	[10]
Q.5	a) define/Explain the following	98 ⁴⁵ 845 ⁵⁴
	(1) Aliasing or fold over error (2) Slope overload error (3) q	uantization process
	(4) TDM (5) Inter symbol interference (ISI)	[10]
	b). Draw the block diagram of BSK generation & detection explain the	working giving
	waveforms	[10]
Q6.	a). Consider that bit sequence given below is to be transmitted Bit sequence	ce =10110011.
450	Draw the resulting waveform if the sequence is transmitted using	08t
	1. Unipolar RZ 2. Polar RZ 3. AMI	
25 10 P	4. Split phase Manchester 5. M-ary where M=4 (Polar quaternary)	[10]
7	b) . Write short note on following (any two)	
S. A.	1. Need of modulation	
	2. Role of balance modulator	
99 t. Jr.	3. Delta modulation	
	4. Friss Formula of noise.	
57.5	******************	

56409 Page **2** of **2**