Paper / Subject Code: 51421 / Engineering Mathematics III

June 4, 2024 02:30 pm - 05:30 pm 1T01233 - S.E.(Information Technology Engineering)(SEM-III) (Choice Base Credit Grading System) (R- 19) (C Scheme) / 51421 - Enginering Mathematics III QP CODE: 10055380

Time: 3 hours

Marks: 80

6

6

8

- N.B. (1) Question No. 1 is compulsory.
 - (2) Answer any three questions from Q.2 to Q.6.
 - (3) Use of Statistical Tables permitted.
 - (4) Figures to the right indicate full marks
- Q1 A If $f(t) = (\sqrt{t} + \frac{1}{\sqrt{t}})^2$, find L[f(t)] and hence find L{ $e^{2t}f(t)$ }
 - B Find L⁻¹ $\{\frac{1}{s(s^2+4)}\}$
 - Obtain half-range cosine series for f(x) = x(2-x) in 0 < x < 2
 - Find moment generating function of the following distribution. Hence find mean and variance.

	x 🖉	1	•	3	5	4	5	A.
1	P(X)	0.4	20	0.1	5	0.2	0.3	8

- A Find the orthogonal trajectories of the family of curves 6 $e^{x}[xsiny-ycosy] = c$
 - Find L{t($\frac{cost}{e^t}$)²}
 - Find the Fourier series expansion for f(x) = 2, -2 < x < 0. =0, 0 < x < 2
 - Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$
- A Find $L^{-1}\{\log(1-\frac{1}{s^2})\}$
 - Find the analytic function f(z) = u + iv where $u + v = \frac{sin2x}{cosh2y cos2x}$, using 6 Milne-Thompson's Method.
 - Fit a parabola $x = a + by + cy^2$ for the following data:

(A)	A 10		10		007			
X :	jot	1	S	2	A	3	4	5
Y :	A	10	150	12	20	15	14	15
	XY	Ć	V	6	7			

Page 1 of 2

Paper / Subject Code: 51421 / Enginering Mathematics III

- Q4 A The first 4 moments of a distribution about origin of the random variable X are -1.5, 17, -30 and 108. Compute Mean, variance, μ_3 and μ_4 .
 - B Consider the equations of regression lines 5x-y=22 and 64x-45y=24. Find \bar{x} , \bar{y} and correlation coefficient r.
 - C Find L⁻¹{ $\frac{(s+3)^2}{(s^2+6s+13)^2}$ }
- Q5 A Find the Laplace transform of $\cos^3 t \cos 5t$.
 - B Find Spearman's rank correlation coefficient for the data below:

				/			A)
X :	32	55 49	60	43	37	43	49	10	20
Y:	40	30 70	20	30	50	72	60	45	25 🧹
5	7	2	~	0					6

C Obtain Fourier Series for $f(x) = \frac{1}{2}(\pi - x)$ in $(0, 2\pi)$

- Hence, deduce that $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac$
- A If f(x) is probability density function of a continuous random variable X, find k, mean and variance.

$$f(\mathbf{x}) = \begin{cases} kx^2, & 0 \le x \le 1\\ (2-x)^2, & 1 \le x \le 2 \end{cases}$$

B Check if there exists an analytic function whose real part is 6 $u=sinx+3x^2-y^2+5y+4$. Justify your answer.

Evaluate the following integral by using Laplace transforms

8

 $\int_0^\infty e^{-2t} \left[\int_0^t (\frac{e^{3u} \sin^2 2u}{u}) du \right] dt$

