Paper / Subject Code: 51421 / Enginering Mathematics III

12/11/2024 IT SEM-III C SCHEME ENGG.MATHS-III QP. CODE: 10065451

(Time: 3 Hours) (Total Marks: 80)

- N.B. (1) Question No. 1 is compulsory.
 - (2) Answer any three questions from Q.2 to Q.6.
 - (3) Use of Statistical Tables permitted.
 - (4) Figures to the right indicate full marks.
- **Q1.** (a) Find the Laplace transform of t e^{-t} cosh 2t
 - (b) If $u = -r^3 \sin 3\theta$ find the analytic function f(z) whose real part is u. [05]
 - (c) Calculate the Spearman's rank correlation coefficient R

X	85	74	85	50	65	78	74	60	74	90
у	78	91	78	58	60	72	80	55	68	70

[05]

[05]

[06]

[06]

(d) Find inverse Laplace transform of $\frac{1}{s} \log \left(1 + \frac{1}{s^2}\right)$.

- [06]
- **Q2.** (a) Evaluate by using Laplace transform of $\int_0^\infty e^{-2t} \frac{\cos 2t \sin 3t}{t} dt$.
 - (b) Find the value of k if the function $f(x) = k x e^{\frac{-x}{3}}$, x > 0f(x) = 0 $0 \le x$.

Is a probability density function. find mean and variance. [06]

(c) Obtain the Fourier series to represent $f(x) = \frac{3x^2 - 6x\pi + 2\pi^2}{12}$ in $(0, 2\pi)$

Hence show that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2}$ [08]

- **Q3.** (a) Find the analytic function whose real part is $u = e^{2x}$ (x cos 2y y sin 2y).
 - (b) Obtain the Fourier series to represent $f(x) = x x^2$, $-1 \le x \le 1$. [06]
 - (c) Using convolution theorem Find inverse Laplace transform of $\frac{(s+3)^2}{(s^2+6s+18)^2}$. [08]
- **Q4.** (a) Obtain the half range cosine series of $f(x) = x (\pi x)$ in $(0, \pi)$

Hence show that
$$\frac{\pi^4}{90} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4}$$
 [06]

(b) Find the lines of regression and coefficient of correlation for the data

5	X		65	66	67	67	68	69	70	72
Y	у	X	67	68	65	66	72	72	69	71

- (c) Evaluate by using Laplace transform of $\int_0^\infty e^{-t} \left(\int_0^t u^2 \sin hu \cos hu \, du \right) \, dt$ [08]
- **Q5.** (a) Find the orthogonal trajectories of family of curves $e^{-x} \cos y + x y = \alpha$ where α is the real constant in the x y plane. [06]

Paper / Subject Code: 51421 / Enginering Mathematics III

(b) A random variable x has the probability distribution

			.~	7		
X	0	1,5	2	O,	3	Ž
P(x=x)	1	1	51	50	1	4
	6	$\frac{3}{3}$	$\frac{5}{3}$	A.	<u>6</u>	

Find the moment generating function about origin, also find mean and variance.

(c) Fit a second degree parabolic curve to the following:

<i>C</i> .					\sim			
X year	1965	66	67	68	69	70	71	72
Y profit	125	140	165	195	200	215	220	230

Also estimate the profit in 1973

- **Q6.** (a) Find inverse Laplace transform of $\frac{(2s^2 6s + 5)}{(s^3 6s^2 + 11s 6)}$ [06]
 - (b) Show that the function $y = e^x$ (x sin y + y cos y) satisfies Laplace equation And find its corresponding analytic function and its harmonic conjugate.
 - (c) A random variable X has the probability function

X S		2	3	4	5	6	7,8
P(X=x)	K	2K	3K	K^2	$K^2 + K$	$2K^2$	$4K^2$

[06]

[08]

Find k, p(X < 5), p(x > 3), $P(0 \le X \le 5)$.

********<mark>***</mark>*****