3/12/2024 FE ALL BRANCHES SEM-II C SCHEME EM-II QP CODE: 10069278

(Time: 3 hours) Max Marks: 80

Note: (1) Question No. 1 is Compulsory.

- (2) Answer any three questions from Q.2 to Q.6.
- (3) Figures to the right indicate full marks.

Q1.

- Solve: $\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 \frac{x}{y}\right) dy = 0$
- b) Solve: $(D^2 4D + 4)y = e^x + \cos 2x$
- Compute the value of $\int_0^{\frac{\pi}{2}} \sqrt{\sin x + \cos x} \, dx$ using Simpson's $3/8^{th}$ rule by dividing into six sub intervals
- d) Change the order of Integration: $I = \int_0^4 \int_{y/2}^{9-y} f(x,y) \, dx \, dy$

Q2.

- a) Solve: $\frac{d^2y}{dx^2} y = x^2 \sin 3x$
- b) Solve: (ylogy)dx + (x logy)dy = 0
- c) Apply Runge- Kutta method of fourth order to find an approximate value of y when x = 0.4 by taking h = 0.2 for $\frac{dy}{dx} = \frac{y-x}{y+x}$; y(0) = 1

O3

- a) Using DUIS Rule, show that $\int_0^1 \frac{x^{a-1}}{\log x} dx = \log(1+a)$; $a \ge 0$
- b) Evaluate $\iint y \, dx \, dy$ over a region bounded by $y = x^2$ and x + y = 2
- c) Evaluate: $\int_0^2 \int_0^x \int_0^{2x+2y} e^{x+y+z} dz dy dx$ 8

O4.

- a) Find using double integration the area of the cardioid $r = a(1 cos\theta)$ 6 lying outside the circle $r = acos\theta$
- b) Using Euler's method find y(0.5) for $\frac{dy}{dx} = 1 + xy$; y(0) = 1 with h = 0.1
- c) Prove that $\int_0^\infty x^2 e^{-x^4} dx * \int_0^\infty \frac{e^{-x^2}}{\sqrt{x}} dx = \frac{\pi}{4\sqrt{2}}$

69278

Q5.

- a) Evaluate $\iiint xyz \, dxdydz$ over a region D by changing into cylindrical polar coordinates where region is bounded by coordinate planes, plane z = 1 and a cylinder $x^2 + y^2 = 1$
- b) Solve $(y^4 + 2y)dx + (xy^3 + 2y^4 4x)dy = 0$
- c) Solve by method of Variation of parameter: $(D^2 + 1)y = \sec x \ \tan x$ 8

Q6.

- using modified Euler's method find y(0.2) for $\frac{dy}{dx} = x y^2$; y(0) = 61 with h = 0.2
- Prove that length of the arc of the curve $y = log(\frac{e^x 1}{e^x + 1})$ from x = 1 to x = 2 is $log(e + \frac{1}{e})$
- c) Evaluate by changing to polar coordinates:

$$\int_{0}^{a/\sqrt{2}} \int_{y}^{a^{2}-y^{2}} \log(x^{2}+y^{2}) dx dy ; a > 0$$