Paper / Subject Code: 29711 / Engineering Mathematics - II

1T01832 - F.E.(SEM II)(ALL BRANCHES) (Rev - 2019-20 C Scheme) / 29711 - Engineering Mathematics - II
QP CODE: 10015504

DATE: 07/12/2022

(Time: 3 Hours) Max. Marks: 80

N.B: 1) Question No.1 is COMPULSORY

- 2) Answer ANY THREE questions from Q. 2 to Q. 6
- 3) Figures to the right indicate full marks

$$(2x - 2x^3y^2)dy + (x^2y^3 + 2y)dx = 0$$

b) Show that

$$\int_0^{\pi/2} \sqrt{\sin \theta} \ d\theta * \int_0^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} = \pi$$

c) Evaluate

$$\int_0^{\log 2} \int_0^x \int_0^{x-y} e^{x+y+z} dz \, dy \, dx$$

d) Solve

$$(D^2 + 3D + 2)y = \sin(e^x)$$

Q.2 a) Evaluate $\int_0^1 \frac{x^{a-1}}{\log x} dx$ using DUIS rule

6

8

b) Change the order of Integration

$$\int_0^a \int_{\sqrt{a^2 - x^2}}^{x + 3a} f(x, y) \, dy \, dx$$

c) Solve by the method of variation of parameters

$$\frac{d^2y}{dx^2} + y = \sec x \tan x$$

Q.3 a) Evaluate $\iiint dx \ dy \ dz$ over the solid region of paraboloid $x^2 + y^2 = 4z$ 6 cut off by the plane z = 4

$$y^4 dx = \left(\frac{1}{x^{3/4}} - xy^3\right) dy$$

c) Prove that

$$\left(\int_0^3 \frac{x^{3/2}}{\sqrt{3-x}} \, dx\right) * \left(\int_0^1 \frac{1}{\sqrt{1-x^{1/4}}} \, dx\right) = \frac{432}{35} \pi$$

5504

Paper / Subject Code: 29711 / Engineering Mathematics - II

QP CODE: 10015504

- Q.4 a) Solve $[y\sin(xy) + xy^2\cos(xy)]dx = -[x\sin(xy) + x^2y\cos(xy)]dy$
 - b) Change the order of the integration and evaluate 6

$$\int_0^1 \int_{-\sqrt{y}}^{-y^2} xy \ dx \ dy$$

c) Solve

$$(D^2 + 2)y = e^x \cos x + x^2 e^{3x}.$$

- **Q.5** a) Solve $x\sin x \, dy + (xy\cos x y\sin x 2)dx = 0$
 - b) Evaluate $(D^2 + 1)y = 2^x + \sin x \sin 2x$
 - Using Polar co-ordinates, evaluate $\iint \frac{(x^2+y^2)^2}{x^2y^2} dx dy \text{ over the area}$ common to the circles $x^2+y^2=ax$ and $x^2+y^2=by$, a>0, b>0
- Q.6 a) Find the length of the cardioid $r = a (1 \cos \theta)$ lying outside the circle $r = a \cos \theta$
 - b) Evaluate $\iint xy \, dx \, dy$ over the region bounded by the curves y = 4x, x + y = 3, y = 0 and y = 2
 - c) Evaluate $\iiint (x^2 + y^2 + z^2) dx dy dz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = 4$