Paper / Subject Code: 37812 / Electromagnetic Engineering

T.E. 1BLX1 Scm-VI /GBCGO/R-19/'C'Scheme/Sub!- EE/S.H-2024 Odrew 05/12/2024 OP Code: 10068233

(3Hours.)

Max. Marks: 80

N.B.: (1)	Question No.	1 is	Compulsory.
------------------	--------------	------	-------------

- (2) Attempt any three questions out of the remaining five.
- (3) Each question carries 20 marks and sub-question carry equal marks.
- (4) Assume suitable data if required.

Question No. 1 is Compulsory. [Any Four]

1.	(a)	State and prove Divergence theorem.	(5)
	(b)	Explain the significance of convection and conduction current.	(5)
	(c)	Derive Poisson's and Laplace equation	(5)
	(d)	Explain the boundary conditions of E and H fields for two dielectric media.	(5)
	(e)	Explain the radiation resistance, directivity, Beam-width and directive gain of the antenna.	(5)
2.	(a)	Derive an expression of Electric Field Intensity due to infinite surface charge at any point P on z axis, if surface charge is placed at $z = 0$ plane.	(10)
	(b)	State Biot-Savart law. Obtain the magnetic field intensity at point P due to a straight-line filamentary conductor lying on z-axis.	(10)
3.	(a)	State Poynting theorem and derive an expression for the Poynting vector. Explain the power terms mentioned in the derivation.	(10)
	(b)	Write a note on Smith chart and explain the steps involved to calculate SWR from the Smith Chart.	(10)
4.	(a)	Derive the expression of characteristic impedance of a transmission line.	(10)
	(b)	State and explain Maxwell's equations in differential and integral form for static and time varying fields.	(10)
5	(a)	Write short note on parabolic reflector antenna. Describe feeding techniques of parabolic reflector array.	(10)
	(b)	Explain in detail sources and characteristics of EMI. What are EMI control techniques.	(10)
6.	(a)	Derive an expression for reflection and transmission coefficient for normal incidence in case of reflection from perfect dielectric.	(10)
€ ₂ .	(b)	Write Shot Notes on: (i) Types of Polarization (ii) Lossless Propagation	(10)