N.B. : (1) Question No 1 is Compulsory.
(2) Attempt any three questions out of the remaining five.
(3) All questions carry equal marks.
(4) Assume suitable data, if required and state it clearly.

1 Attempt any FOUR
a With suitable block diagram, explain the sample and hold circuit
b State and explain sampling theorem
c Write any five advantages of digital control over analog control system.
d Explain Mason's gain formula for Signal Flow Graph.
e Discuss in detail about the stability of a system in the z plane.
2 a Discuss ZOH as low-pass filter using clear diagrams of its frequency response characteristics.
b Determine the stability of the system having characteristics equation
$\mathrm{P}(\mathrm{z})=\mathrm{z} 4-1.2 \mathrm{z} 3+0.07 \mathrm{z} 2+0.3 \mathrm{z}-0.08=0$ using Jury's Stability Criterion.
3 a Draw a typical block diagram of a digital control system and explain each block in detail.
b A feedback system has a closed loop transfer function
$\mathrm{Y}(\mathrm{s}) / \mathrm{R}(\mathrm{s})=10(\mathrm{~s}+4) / \mathrm{s}(\mathrm{s}+1)(\mathrm{s}+3)$
Construct three different state models for this system:
i) one where the system matrix A is diagonal matrix
ii) one where A is in first companion form
iii) one where A is in second companion form

4 a With neat block diagram explain the full order observer.
b Design a deadbeat controller for a discrete-time system which is described by following open-loop pulse transfer function. Assume loop to be closed by negative unity feedback.

$$
\begin{equation*}
G(z)=\frac{2(z+0.5)}{(z-1)(z-0.61)} \tag{10}
\end{equation*}
$$

5 a What are the state space representation forms and explain them.
b Describe bilinear transformation approach for discretization of continuous time
systems in detail. Also, comment on the mapping between s-plane and z-plane under such discretization.
6 a Prove Ackermann's formula for the determination of the state feedback gain
b Define Controllability and Observability of a system. Discuss any one method to determine Controllability and Observability of a system.

