Paper / Subject Code: 32321 / Principles of Control System

TE (ELEX.) sem(X) R-19 C-scheme

03/06/25.

Duration 3 Hours

[Maximum Marks 80]

5

5 5

NOTE:-1) Question 1 is compulsory

- 2) Solve any three from the remaining five questions
- 3) Assume suitable data if necessary.
- 4) Figures to the right indicate full marks

Q.1. a. Explain open loop system with suitable example

- b. What are the properties of state transition matrix?
- c. Explain Controllability & Observability with necessary condition for stability.
- d. How to determine Gain Margin and Phase Margin from Polar Plot.
- Q.2. a. Find Rise Time, Peak Time and Time Constant for system given by following 10 transfer function

$$\frac{C(s)}{R(S)} = \frac{10}{(s^2 + 2 s + 10)}$$

b. Obtain closed loop transfer function using Block Diagram Reduction Technique. 10

Q.3. a. For unity feedback system with open loop transfer function

$$G(s) = \frac{100}{(s^2)(s+4)(s+12)}$$

Determine, e_{ss} for k_p , k_v , k_a when input $r(t) = 2t^2 + 5t + 10$ is applied.

b. For unity feedback system with open loop transfer function

10

$$G(s) = \frac{4}{s(s+2)}$$

Determine damping factor, undamped natural frequency, resonant peak and resonant frequency.

Q.P. Code:

Page 1 of 2

Program Code:-IT01135 .

Paper / Subject Code: 32321 / Principles of Control System

Q.4. a. Explain Lag Compensator design using Bode plot.

10

b. Obtain state variable model of transfer function

10

$$\frac{Y(s)}{R(s)} = \frac{30(s+1)}{(s+5)(s+2)(s+3)}$$

Q.5. a. The open loop transfer function of the system

10

G(s) H(s) =
$$\frac{5}{s(s+1)(s+5)}$$

Using Nyquist criterion, examine closed loop stability of the system.

b. Sketch the Root Locus for open loop transfer function of the system

10

G(s) H(s) =
$$\frac{k(s+1)}{s(s+2)(s+3)}$$

Q.6.a. Sketch the Bode Plot for open loop transfer function of the system

10

G(s) H(s) =
$$\frac{4}{s^2 + s + 4}$$

Also comment on stability.

b. Investigate Controllability and Observability of the system with state model 10

$$A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & -1 \end{bmatrix}$

Landi

Page 2 of 2