
Duration 3 Hours

[Maximum Marks 80]

10

NOTE: 1) Question 1 is **compulsory**

- 2) Solve any three from the remaining five questions
- 3) Assume suitable data if necessary.
- 4) Figures to the right indicate full marks
- Q.1. a Explain any five rules of Root locus method.
 - b. Define the following terms related to stability analysis using bode plot.
 - (i) Gain Crossover Frequency
 - (ii) Gain Crossover Frequency
 - (iii) Gain Margin
 - (iv) Phase Margin
 - c. Compare open loop transfer function and closed loop transfer function with proper block diagram and Example.
 - d. Explain Mason Gain's formula with its need.
- Q.2. a. Find the overall transfer function of the given system using block diagram reduction method.

b. The characteristic equation of a system is, determine range of K for stability.

 $S^4 + 7S^3 + 10S^2 + 2KS + K = 0$

Q3. a. A second order system is given by;

$$\frac{C(S)}{R(S)} = \frac{25}{(S^2 + 6s + 25)}$$

Find damping ratio, natural frequency, delay time, peak time, peak-overshoot, settling time if subjected to step input.

b. Draw polar plot of G(s) $H(s) = \frac{K}{(1+2S)(1+3S)}$

1(

Q.4.a. Sketch the Root locus for given open loop transfer function and comment on the stability.

10

$$G(s) H(s) = \frac{K}{s(S+5)(S+10)}$$

b. Check the controllability and observability of the following state

a

model

$$\dot{x} = Ax + Bu$$

$$Y = Cx$$

where x is the state vector, u is input and y is output and

$$A = \begin{bmatrix} -2 & 4 \\ 2 & 1 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
and $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$

Q.5. a. Draw the Nyquist plot for the given open loop transfer function and test the stability.

10

G(s) H(s) =
$$\frac{1}{S^2(1+s)(1+2s)}$$

b. Obtain the state model for the system with given transfer function.

10

$$\frac{Y(s)}{U(s)} = \frac{24}{s^3 + 9s^2 + 26s + 24}$$

Q.6. Short note on (Any 2)

20

- a. Pole Placement method
- b. Lag-lead compensator
- c. Explain the Time domain specifications for second order under damped system.

55830

Page 2 of 2