Duration: 3hrs
[Max Marks: 80]
N.B. : (1) Question No 1 is Compulsory.
(2) Attempt any three questions out of the remaining five.
(3) All questions carry equal marks.
(4) Assume suitable data, if required and state it clearly.

1 Attempt any FOUR
a Differentiate between Bilinear Transformation and Impulse Invariance Methods
b Determine the zeros of the following FIR systems and indicate whether the system is minimum, maximum or mixed phase.

$$
\begin{gathered}
H_{1}(z)=6+z^{-1}-z^{-2} \\
H_{2}(z)=1-z^{-1}-6 z^{-2}
\end{gathered}
$$

c Compute 4-point DFT of a causal four sample sequence given by $x(n)=\{j, 0, j, 1\}$
d State and prove any two properties of DFT
e What is multirate DSP? State its applications.

2 a Compute DFT of the following sequence using DIT FFT algorithm $\mathrm{x}(\mathrm{n})=\{0.5,0.5,0.5,0.5,0,0,0,0\}$
b Write a short note on pipelining in the DSP processor and MAC unit.

3 a Given $\mathrm{H}(\mathrm{s})=[3 /(\mathrm{s}+2)(\mathrm{s}+3)], \mathrm{T}=0.1 \mathrm{sec}$. Design digital IIR filter using BLT method. Explain advantages of BLT over IIM method
b Realize the following IIR filter function by lattice realization structure.

$$
H(z)=\frac{1}{1+\frac{3}{4} z^{-1}+\frac{1}{2} z^{-2}+\frac{1}{4} z^{-3}}
$$

4 a Design a linear phase FIR low pass filter using rectangular window by taking 7 samples of window sequence and with cutoff frequency $\mathrm{wc}=0.2 \pi \mathrm{rad} / \mathrm{sample}$
b Design a FIR low pass filter with the following desired frequency response.

$$
H\left(e^{j \omega}\right)=\left\{\begin{array}{cc}
e^{-j 2 \omega},-\frac{\pi}{4} \leq w \leq \frac{\pi}{4} \\
0, & \text { Otherwise }
\end{array}\right.
$$

5 a Explain concept of decimation by integer D.
b Find the circular convolution of the sequences using DFT
$X(n)=\{1,2,1,2\}$ and $h(n)=\{4,0,4,0\}$
6 a Write a short note on Limit cycle oscillations
b Write a short note on Product quantization error and input quantization error

