Duration 3 Hours

[Maximum Marks 80]

NOTE:-1) Question 1 is **compulsory**

- 2) Solve any three from the remaining five questions
- 3) Assume suitable data if necessary.
- 4) Figures to the right indicate full marks
- Q.1. Attempt any four (04) out of the following
 - (a) Explain high frequency equivalent circuit of BJT.
 - (b) Discuss the effect of negative feedback on output resistance.
 - (c) Explain Darlington pair amplifier.
 - (d) State and explain the Barkhausen's criterion.
 - (e) Explain current mirror.
- Q.2. (a) Explain Class B push pull power amplifier and derive expression for efficiency.
 - (b) Explain Small signal analysis for MOSFET active load circuit.
- Q.3. (a). Determine the lower cut off frequency for the network shown in figure below using the following parameters

$$C_S = 10\mu F$$
, $C_E = 20\mu F$, $C_C = 1\mu F$

$$R_S = 1k\Omega, R_1 = 40 \text{ k}\Omega, R_2 = 10 \text{ k}\Omega, R_E = 2 \text{ k}\Omega, R_C = 4 \text{ k}\Omega, R_L = 2.2 \text{ k}\Omega$$

$$\beta = 100, r_0 = \infty, Vcc = 20V.$$

10

(b). Explain working of Wien Bridge oscillator and give expression for frequency of Oscillations.

55885

Q.4. (a). Find I_O for given circuit.

 $K_{n1}=K_{n2}=0.1~mA~/V^2,~K_{n3}=K_{n4}=0.3~mA~/V^2,~V_{TN}=1V,~\lambda=0~for~M1~,~M2~,~M3~and~\lambda=0.01/V~for~M4.~Given~data~R_D=16~K\Omega,~R_1=30~K\Omega$

- (b). What is the use of negative feedback in amplifier? Draw block diagram for current shunt feedback and find A_f , R_{if} , and R_{of} .
- Q.5. (a). Determine voltage gain, input and output impedance for the two stage amplifier shown below. The transistors have parameters as follows: $\beta 1=\beta 2=220$, $R1=22K\Omega$, $R2=2.2K\Omega$, $RC=1K\Omega$, $RE=150\Omega$, $Cc=5\mu F$, $CE=100\mu F$, Vcc=15V.

- (b). Explain working of DIAC with construction and V-I characteristics. Also give its applications.
- **Q.6**. Write short notes on any **three** of the following:

20

- (a). Cascode BJT Amplifier
- (b). Cross over distortion in Class B power amplifier
- (c). Types of couplings in multistage amplifiers
- (d). Factors contributing to high frequency response analysis

⁷55885