Paper / Subject Code: 40921 / Engineering Mathematics-IV

S.B./ELX/Sem-IV/CBCGG/R-19/'C'Scheme/Subi-EM-IV/S.H. 2004 Dato: 02/12/2029 BP. Code: -10069946

(3 Hours)

[Total Marks: 80]

N.B.: 1) Question No. 1 is Compulsory.

- 2) Answer any THREE questions from 0.2 to 0.6.
- 3) Figures to the right indicate full marks.
- Verify Cauchy Schwarz inequality for the vectors u=(2,1,1,-1) and Q.1 v=(1,-2,1,1). Find the angle between vectors u and v.

(5)

(5)

Find p, q and variance of X, if the mean of the following distribution is 16 and

X	8	12	16	20	24
P(X)	1/8	р	q	1/4	1/12

- Evaluate $\int_c \frac{1}{z} dz$ where c is unit circle |z| = 1. (5)
- (d) Find the extremal of $\int_0^{3\pi/2} (y^2 y'^2) dx$ where y(0) = 0; $y(3\pi/2) = 1$ (5)
- Evaluate $\int_{c} \frac{z+3}{(z-1)(z-4)} dz$, where c is the circle |z-1|=2. (6)

Fit the second degree polynomial for following data 5

(6)

- 31 50 73
- Transform the basis $\{(1,1,1); (-1,1,0); (1,2,1)\}$ into orthogonal basis using (8) Gram-Schmidt process.
- Check whether the following sets are subspace of R³

(6)

- W=(a,0,0)/a belongs to R }
- $W = \{(x, y, z)/x^2 + y^2 + z^2 \le 1\}$

(8) Obtain all possible Laurent's series expansion of $f(z) = \frac{1}{z^2 + 3z + 2}$ about z = 0.

- Q.4 (a) If X and Y are independent random variable with E(X) = 6 and E(Y) = -6, V(X) = 4, V(Y) = 9 then find (6)
 - i) E(2X + 3Y 2)
 - ii) V(3X + 2Y + 2)
 - (b) Evaluate $\int_{0}^{1+i} (x-y+ix^2) dz$ along the line from z=0 to z=1+i.
 - (c) Find rank, index, signature and nature of the Quadratic form by reducing it into (8) Canonical form by congruent transformation $x^2 + 3y^2 + 3z^2 2yz$,
- Q.5 (a) Three factories A, B, C produce 30%, 50% and 20% of the total production of an item. Out of their production 80%, 50% and 10% are defective respectively. An item is chosen at random and found to be defective. Find the probability that it was produced by the factory A.
 - (b) A continuous random variable has pdf $f(x) = k(x x^2)$, $0 \le x \le 1$. (6) Determine k, mean, and variance of the distribution.
 - (c) Using Rayliegh-Ritz method solve boundary value problem (8) $\int_0^1 (2x^2y 4y^2 + y'^2) dx , y(0) = 0, y(1) = 0.$
- Q.6 (a) x 65 66 67 67 68 69 70 72 y 67 68 65 68 72 72 69 71 Calculate the Karl Pearson's coefficient of correlation.
 - (b) Find the extremals of $\int_a^b (16y^2 y''^2 + x^2) dx$. (6)
 - (c) Given: 6y = 5x + 90, 15x = 8y + 130 are regression lines and $\sigma_x^2 = 16$ (8) then find (i) mean of X and Y (ii) correlation coefficient (r) (iii) σ_y^2 .

1