(3 Hours)		irs) [Total Mai	[Total Marks: 80]	
N.	B.: (1)	Question No. 1 is Compulsory .		
	(2	Attempt any three questions out of the remaining five .		
	(3 (4	Each question carries 20 marks and sub-question carry equal marks. Assume suitable data if required.	OCK ST	
1.	(a)	Design 1-bit comparator circuit using gate.	(5)	
	(b)	Write Verilog code for 2-input EXOR gate	(5)	
	(c)	Explain race around condition in JK flipflop. How will you avoid race around condition?	(5)	
	(d)	Compare CMOS and TTL logic families.	(5)	
2.	(a)	Design Mod-144 counter using IC7493.	(10)	
	(b)	Design and Implement sequence detector circuit for 1001 (overlapping sequence) using J-K- flip-flop.	(10)	
3. <	(a)	Design and implement half subtractor using IC74151(Multiplexer)	(10)	
17,	(b)	Write Verilog code for 8:1 Multiplexer using structural architecture.	(10)	
4.	(a)	Design 3-bit Asynchronous counter using JK Flip-Flops.	(10)	
	(b)	Explain JK flipflop with excitation table, truth table, characteristics equation and state diagram.	(10)	
5	(a)	Explain in details working of TTL 2 input NAND gate.	(10)	
	(b)	Draw 4 bit universal shift register using D-Flipflops and explain its operation.	(10)	
6.	(a)	Explain XC- 4000 FPGA architecture with neat clean diagram.	(10)	
100	(b)	Explain lockout condition in counter with example.	(10)	

56962