	~	Paper / Subject Code: 51335 / Floring in Instruments & Manage			
	Dur	Paper / Subject Code: 51325 / Electronic Instruments & Measuration: 3Hrs	rements [Max Marks:80]		
		.: (1) Question No 1 is Compulsory.	•		
		(2) Attempt any three questions out of the remaining five.	02/12/20 QP-1003897	123	
		(3) All questions carry equal marks.		_	
		(4) Assume suitable data, if required and state it clearly.	QP-100389/3	3	
		(4) Assume suitable data, if required and state it clearly.			
1		Attempt any FOUR .	[20]		
	a	How are instrumental errors different from gross errors?	•		
	b	The expected value of the voltage across a resistor is 80 V. However,	the	6.	
		measurement gives a value of 79 V. Calculate (i) absolute error, (ii) % error, (iii)			
		relative accuracy and (iv) % of accuracy			
	c	Compare sensor and transducer			
	d	Define the following dynamic characteristics of instrument			
		(i) Speed of Response			
		(ii) Lag			
		(iii) Fidelity (iv) Dynamic error			
	е	Explain the function of delay line in CRO with neat diagram			
		2. Splant the fanction of delay line in Old with heat diagram			
2	a	Explain with the help of a block diagram the operation of a spectrum a	nalyzer. [10]		
		state applications of a spectrum Analyzer	13 1		
	b	Explain various features of Digital Storage Oscilloscope	[10]		
3	_	Finalsia harra Waisa D. 1	***		
3	a	Explain how a Weins Bridge can be used to measure frequency?	[10]		
	b	Voltmeter having a sensitivity of 1000Ω/volts read 100 V on its 150 V			
		when connected across an unknown resistor in series with a millimeter millimeter reads 5mA	, when		
		(i) Calculate apparent resistance of unknown resistor (ii) Calculate actual resistance of unknown resistor			
		(iii) Calculate actual resistance of unknown resistor (iii) Calculate error due to loading effect of voltmeter.			
		(iii) Calculate error due to toading effect of volumeter.			
4	a	Explain the method of measuring displacement using LVDT. State the	[10]		
		advantages and disadvantages of LVDT.		,	
	b	Explain with the help of a block diagram the operation of the Digital Fi	requency [10]		
		meter.			
5	a	Compare Maxwell's bridge and Hay's Bridge	[10]		
	b	Explain the operation of Q-meter for measurement of high impedance			
	~				
6	a	Explain how Lissajous patterns are used for measurement of an unknown	wn [10]		
		frequency and phase shift using CRO.			
	b	Choose the most suitable temperature transducer in each of the following	ng: [10]		
		(i) Rapid Changing temperature			
		(ii) Very small temperature changes about 40°C	8		
		(iii) Very high temperature (>1500°C)			
		(iv) Highly accurate temperature Measurement			
		(v) Wide temperature Variations			