Paper / Subject Code: 52971 / Optical Communication and Networks

14-May-2024 10:30 am - 01:30 pm 1T01038 - B.E.(Electronics and Telecommunication) (SEM-VIII)(Choice Base Credit Grading System) (R- 19) (C Scheme) / 52971 - Optical Communication and Networks QP CODE: 10054592

[Duration: 3 hours]	[Max marks: 80]
N.B.: (1) Question No.1 is Compulsory.	
(2) Attempt any three questions out of the remaining five.	8
(3) All questions carry equal marks.	
(4) Assume suitable data, if required and state it clearly.	Car at
Q1. Attempt any four	
a. What is the Numerical aperture of a fiber? Explain its significa	nce. (05)
b. Explain different types of fibers with their refractive index prof	
and mention their diameters.c. Explain the Cut-off wavelength for a single-mode fiber.	(05) (05)
d. What are Optical windows and mention attenuation in each	
window, e. Explain the concept of Fiber Bragg Grating and its	(05)
applications.	(05)
Q2. a. An Optical fiber is made of a glass core of radius 50 µm wit	h a
refractive index of 1.55 and cladding with a refractive index	(5)
For the fiber, find.	P. S.
(i) Numerical Aperture (ii) Solid Acceptance angle	100 M
(iii) Normalized frequency V at 0.8μm.	25
(iv) Number of modes that the fiber can support at 0.8μm.	(10)
b. What are the causes for signal attenuation in a fiber	(10)
Q3. a. Explain intramodal and intermodal dispersion in fiber.	(10)
b. Explain any one fiber fabrication process with a neat	
dîagram.	(10)
Q4. a. A 12 Km. long optical fiber link has a loss of 1.5 dB/Km	
(i)What is the minimum optical power that must be launched	
into the fiber to maintain an optical power of 0.3μW at the receive	iving end .
(ii) What is the required input power if the fiber has a loss of 2.5d	IB/Km (10)
b. Explain different types of optical Amplifiers.	(10)

