Paper / Subject Code: 52976 / RF Design

19/12/2024 EXTC SEM-VIII C SCHEME RF DESIGN QP CODE: 10065353

;							
	(1) (2) (3) (4)	Solve any t Figures to	o. 1 is compulso hree questions f the right indicat itable data if ne	from the rema te full marks.	430		heet.
	` /			E,		, Till,	(3)
	a)		four questions acteristics of mix	ers.			5
	b)	Find order <i>N</i> loss method f	for designing a for cut-off freque on loss at 3 GHz.	maximally fla	A 100		
	c)		stability criteria i		mplifier desig	n?	
	d)		al and nuclear so			45	
	e)	- A -	PR and FCC star			COMI	• 3
	a)		y-pass composite 75 Ω . Place the i				ina
	b)		us power gains				ain
		ii) Available	power gain an				
	- \	expressions for		\$	DAC - 141 - 41 - 4	£ 45°	
	a) b)		arious shielding t				
	a)						
	V	determine which device has the greatest stability.					
		Device	S_{11}	S ₁₂	S ₂₁	S ₂₂	
		7				20	
		A = A	$0.75 \angle -60^{\circ}$	0.2 ∠70°	5.0 ∠90°	0.51 ∠60°	
		В	0.34 Z-170°	0.06 ∠70°	4.3 ∠80°	0.45 ∠−25°	
	b)	В		0.06 ∠70° ators? Give a		0.45 ∠−25°	ase
	b)	В	0.34 Z-170° e noise in oscill			0.45 ∠−25°	ase
	b) a)	B What is phas noise. Design a max	e noise in oscill imu <mark>m</mark> gain ampli	ators? Give a ifier using oper	mathematical n circuit shunt	0.45 ∠−25° analysis of pha stub at 5 GHz	
	ROT	B What is phas noise. Design a max	e noise in oscill	ators? Give a ifier using oper	mathematical n circuit shunt	0.45 ∠−25° analysis of pha stub at 5 GHz	
	ROT	B What is phas noise. Design a max	e noise in oscill imu <mark>m</mark> gain ampli	ators? Give a ifier using oper	mathematical n circuit shunt	0.45 ∠−25° analysis of pha stub at 5 GHz	
	ROT	B What is phas noise. Design a max with a GaAs I	e noise in oscill imum gain ampli MESFET with th	ators? Give a ifier using open e following sca	mathematical n circuit shunt attering parameters s_{21}	$0.45 \angle -25^{\circ}$ analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$)). —
	ROT	B What is phas noise. Design a max with a GaAs I	e noise in oscill imum gain amplimes S_{11}	ators? Give a ifier using open e following sca	mathematical n circuit shunt attering parame	$0.45 \angle -25^{\circ}$ analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$)).
	ROT	B What is phas noise. Design a max with a GaAs I $f(GHz)$	imum gain ampliments s_{11} $0.80\angle -89^{\circ}$	ators? Give a lifter using open to following scann s_{12} 0.03 $\angle 56^{\circ}$	mathematical n circuit shunt attering parameters s_{21}	$0.45 \angle -25^{\circ}$ analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73 \angle -54$). 1° 4°
	ROT	B What is phas noise. Design a max with a GaAs No. f(GHz) 3.0 4.0 5.0	imum gain ampli MESFET with th S_{11} $0.80\angle -89^{\circ}$ $0.72\angle -116^{\circ}$	ators? Give a ifier using open e following sca s_{12} 0.03 $\angle 56^{\circ}$ 0.03 $\angle 57^{\circ}$ 0.03 $\angle 62^{\circ}$	mathematical n circuit shunt attering parameters S_{21} $2.86 \angle 99^{\circ}$ $2.60 \angle 76^{\circ}$	$0.45 \angle -25^{\circ}$ analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73 \angle -54$). 1° 4°
	a)	B What is phas noise. Design a max with a GaAs N f(GHz) 3.0 4.0 5.0 Explain varior Solve Any Fo	imum gain ampli MESFET with the s_{11} $0.80\angle -89^{\circ}$ $0.72\angle -116^{\circ}$ $0.66\angle -142^{\circ}$ us coupling mode	ators? Give a ifier using open e following sea $\frac{s_{12}}{0.03 \angle 56^{\circ}}$ $0.03 \angle 57^{\circ}$ $0.03 \angle 62^{\circ}$ es in EMI.	mathematical n circuit shunt attering parameters S_{21} $2.86 \angle 99^{\circ}$ $2.60 \angle 76^{\circ}$ $2.39 \angle 54^{\circ}$	$0.45 \angle -25^{\circ}$ analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73 \angle -54$). 1° 4°
10 10 10 10 10 10 10 10 10 10 10 10 10 1	a)b)a)	B What is phas noise. Design a max with a GaAs I f(GHz) 3.0 4.0 5.0 Explain varior Solve Any For Write a short	imum gain ampli MESFET with the S_{11} $0.80\angle -89^{\circ}$ $0.72\angle -116^{\circ}$ $0.66\angle -142^{\circ}$ us coupling modern note on Grounding	ators? Give a ifier using open e following sea $\frac{s_{12}}{0.03 \angle 56^{\circ}}$ $0.03 \angle 57^{\circ}$ $0.03 \angle 62^{\circ}$ es in EMI.	mathematical n circuit shunt attering parameters s_{21} $2.86 \angle 99^{\circ}$ $2.60 \angle 76^{\circ}$ $2.39 \angle 54^{\circ}$ EMC.	analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73\angle -54$ $0.72\angle -68$). 1° 4°! 8°
	a) b)	B What is phas noise. Design a max with a GaAs No. f(GHz) 3.0 4.0 5.0 Explain varior Solve Any Forwrite a short Why is the sta	imum gain ampli MESFET with th S_{11} $0.80\angle -89^{\circ}$ $0.72\angle -116^{\circ}$ $0.66\angle -142^{\circ}$ us coupling mode our	ators? Give a ifier using open e following sea $\frac{s_{12}}{0.03 \angle 56^{\circ}}$ $0.03 \angle 57^{\circ}$ $0.03 \angle 62^{\circ}$ es in EMI.	mathematical n circuit shunt attering parameters s_{21} $2.86 \angle 99^{\circ}$ $2.60 \angle 76^{\circ}$ $2.39 \angle 54^{\circ}$ EMC.	analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73\angle -54$ $0.72\angle -68$). 1° 4°! 8°
10 10 10 10 10 10 10 10 10 10 10 10 10 1	a) b) a) b)	What is phas noise. Design a max with a GaAs M f(GHz) 3.0 4.0 5.0 Explain varior Solve Any For Write a short Why is the star K parameters	imum gain ampliment gain gain gain gain gain gain gain gain	ators? Give a ifier using open e following sca $\frac{s_{12}}{0.03 \angle 56^{\circ}}$ $0.03 \angle 57^{\circ}$ $0.03 \angle 62^{\circ}$ es in EMI. In schemes in t μ required in	mathematical n circuit shunt attering parameters s_{21} $2.86 \angle 99^{\circ}$ $2.60 \angle 76^{\circ}$ $2.39 \angle 54^{\circ}$ EMC.	analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73\angle -54$ $0.72\angle -68$). 1° 4°! 8°
	a)b)a)	B What is phas noise. Design a max with a GaAs N f(GHz) 3.0 4.0 5.0 Explain varior Solve Any For Write a short Why is the star K parameters Compare vari	imum gain ampli MESFET with th S_{11} $0.80\angle -89^{\circ}$ $0.72\angle -116^{\circ}$ $0.66\angle -142^{\circ}$ us coupling mode our	ators? Give a ifier using open e following sea s_{12} $0.03 \angle 56^{\circ}$ $0.03 \angle 57^{\circ}$ $0.03 \angle 62^{\circ}$ es in EMI. In a schemes in μ required in methods.	mathematical n circuit shunt attering parameters s_{21} $2.86 \angle 99^{\circ}$ $2.60 \angle 76^{\circ}$ $2.39 \angle 54^{\circ}$ EMC.	analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73\angle -54$ $0.72\angle -68$). 1° 4°! 8°