Paper / Subject Code: 52976 / RF Design ## 19/12/2024 EXTC SEM-VIII C SCHEME RF DESIGN QP CODE: 10065353 | ; | | | | | | | | |--|--|---|---|---|---|--|-----------------------| | | (1)
(2)
(3)
(4) | Solve any t
Figures to | o. 1 is compulso
hree questions f
the right indicat
itable data if ne | from the rema
te full marks. | 430 | | heet. | | | ` / | | | E, | | , Till, | (3) | | | a) | | four questions acteristics of mix | ers. | | | 5 | | | b) | Find order <i>N</i> loss method f | for designing a for cut-off freque on loss at 3 GHz. | maximally fla | A 100 | | | | | c) | | stability criteria i | | mplifier desig | n? | | | | d) | | al and nuclear so | | | 45 | | | | e) | - A - | PR and FCC star | | | COMI | • 3 | | | a) | | y-pass composite 75 Ω . Place the i | | | | ina | | | b) | | us power gains | | | | ain | | | | ii) Available | power gain an | | | | | | | - \ | expressions for | | \$ | DAC - 141 - 41 - 4 | £ 45° | | | | a)
b) | | arious shielding t | | | | | | | a) | | | | | | | | | V | determine which device has the greatest stability. | | | | | | | | | Device | S_{11} | S ₁₂ | S ₂₁ | S ₂₂ | | | | | 7 | | | | 20 | | | | | A = A | $0.75 \angle -60^{\circ}$ | 0.2 ∠70° | 5.0 ∠90° | 0.51 ∠60° | | | | | | | | | | | | | | В | 0.34 Z-170° | 0.06 ∠70° | 4.3 ∠80° | 0.45 ∠−25° | | | | b) | В | | 0.06 ∠70°
ators? Give a | | 0.45 ∠−25° | ase | | | b) | В | 0.34 Z-170° e noise in oscill | | | 0.45 ∠−25° | ase | | | b)
a) | B
What is phas
noise.
Design a max | e noise in oscill
imu <mark>m</mark> gain ampli | ators? Give a ifier using oper | mathematical n circuit shunt | 0.45 ∠−25°
analysis of pha
stub at 5 GHz | | | | ROT | B
What is phas
noise.
Design a max | e noise in oscill | ators? Give a ifier using oper | mathematical n circuit shunt | 0.45 ∠−25°
analysis of pha
stub at 5 GHz | | | | ROT | B
What is phas
noise.
Design a max | e noise in oscill
imu <mark>m</mark> gain ampli | ators? Give a ifier using oper | mathematical n circuit shunt | 0.45 ∠−25°
analysis of pha
stub at 5 GHz | | | | ROT | B What is phas noise. Design a max with a GaAs I | e noise in oscill
imum gain ampli
MESFET with th | ators? Give a ifier using open e following sca | mathematical n circuit shunt attering parameters s_{21} | $0.45 \angle -25^{\circ}$ analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) |).
— | | | ROT | B What is phas noise. Design a max with a GaAs I | e noise in oscill imum gain amplimes S_{11} | ators? Give a ifier using open e following sca | mathematical n circuit shunt attering parame | $0.45 \angle -25^{\circ}$ analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) |).
 | | | ROT | B What is phas noise. Design a max with a GaAs I $f(GHz)$ | imum gain ampliments s_{11} $0.80\angle -89^{\circ}$ | ators? Give a lifter using open to following scann s_{12} 0.03 $\angle 56^{\circ}$ | mathematical n circuit shunt attering parameters s_{21} | $0.45 \angle -25^{\circ}$ analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73 \angle -54$ |).
1°
4° | | | ROT | B What is phas noise. Design a max with a GaAs No. f(GHz) 3.0 4.0 5.0 | imum gain ampli
MESFET with th
S_{11}
$0.80\angle -89^{\circ}$
$0.72\angle -116^{\circ}$ | ators? Give a ifier using open e following sca s_{12} 0.03 $\angle 56^{\circ}$ 0.03 $\angle 57^{\circ}$ 0.03 $\angle 62^{\circ}$ | mathematical n circuit shunt attering parameters S_{21} $2.86 \angle 99^{\circ}$ $2.60 \angle 76^{\circ}$ | $0.45 \angle -25^{\circ}$ analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73 \angle -54$ |).
1°
4° | | | a) | B What is phas noise. Design a max with a GaAs N f(GHz) 3.0 4.0 5.0 Explain varior Solve Any Fo | imum gain ampli
MESFET with the
s_{11}
$0.80\angle -89^{\circ}$
$0.72\angle -116^{\circ}$
$0.66\angle -142^{\circ}$
us coupling mode | ators? Give a ifier using open e following sea $\frac{s_{12}}{0.03 \angle 56^{\circ}}$ $0.03 \angle 57^{\circ}$ $0.03 \angle 62^{\circ}$ es in EMI. | mathematical n circuit shunt attering parameters S_{21} $2.86 \angle 99^{\circ}$ $2.60 \angle 76^{\circ}$ $2.39 \angle 54^{\circ}$ | $0.45 \angle -25^{\circ}$ analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73 \angle -54$ |).
1°
4° | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | a)b)a) | B What is phas noise. Design a max with a GaAs I f(GHz) 3.0 4.0 5.0 Explain varior Solve Any For Write a short | imum gain ampli
MESFET with the
S_{11}
$0.80\angle -89^{\circ}$
$0.72\angle -116^{\circ}$
$0.66\angle -142^{\circ}$
us coupling modern
note on Grounding | ators? Give a ifier using open e following sea $\frac{s_{12}}{0.03 \angle 56^{\circ}}$ $0.03 \angle 57^{\circ}$ $0.03 \angle 62^{\circ}$ es in EMI. | mathematical n circuit shunt attering parameters s_{21} $2.86 \angle 99^{\circ}$ $2.60 \angle 76^{\circ}$ $2.39 \angle 54^{\circ}$ EMC. | analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73\angle -54$ $0.72\angle -68$ |).
1°
4°!
8° | | | a)
b) | B What is phas noise. Design a max with a GaAs No. f(GHz) 3.0 4.0 5.0 Explain varior Solve Any Forwrite a short Why is the sta | imum gain ampli
MESFET with th
S_{11}
$0.80\angle -89^{\circ}$
$0.72\angle -116^{\circ}$
$0.66\angle -142^{\circ}$
us coupling mode
our | ators? Give a ifier using open e following sea $\frac{s_{12}}{0.03 \angle 56^{\circ}}$ $0.03 \angle 57^{\circ}$ $0.03 \angle 62^{\circ}$ es in EMI. | mathematical n circuit shunt attering parameters s_{21} $2.86 \angle 99^{\circ}$ $2.60 \angle 76^{\circ}$ $2.39 \angle 54^{\circ}$ EMC. | analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73\angle -54$ $0.72\angle -68$ |).
1°
4°!
8° | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | a) b) a) b) | What is phas noise. Design a max with a GaAs M f(GHz) 3.0 4.0 5.0 Explain varior Solve Any For Write a short Why is the star K parameters | imum gain ampliment gain gain gain gain gain gain gain | ators? Give a ifier using open e following sca $\frac{s_{12}}{0.03 \angle 56^{\circ}}$ $0.03 \angle 57^{\circ}$ $0.03 \angle 62^{\circ}$ es in EMI. In schemes in t μ required in | mathematical n circuit shunt attering parameters s_{21} $2.86 \angle 99^{\circ}$ $2.60 \angle 76^{\circ}$ $2.39 \angle 54^{\circ}$ EMC. | analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73\angle -54$ $0.72\angle -68$ |).
1°
4°!
8° | | | a)b)a) | B What is phas noise. Design a max with a GaAs N f(GHz) 3.0 4.0 5.0 Explain varior Solve Any For Write a short Why is the star K parameters Compare vari | imum gain ampli
MESFET with th
S_{11}
$0.80\angle -89^{\circ}$
$0.72\angle -116^{\circ}$
$0.66\angle -142^{\circ}$
us coupling mode
our | ators? Give a ifier using open e following sea s_{12} $0.03 \angle 56^{\circ}$ $0.03 \angle 57^{\circ}$ $0.03 \angle 62^{\circ}$ es in EMI. In a schemes in μ required in methods. | mathematical n circuit shunt attering parameters s_{21} $2.86 \angle 99^{\circ}$ $2.60 \angle 76^{\circ}$ $2.39 \angle 54^{\circ}$ EMC. | analysis of phastub at 5 GHz eters ($Z_0 = 50\Omega$) S_{22} $0.76\angle -4$ $0.73\angle -54$ $0.72\angle -68$ |).
1°
4°!
8° |