Paper / Subject Code: 89341 / Electromagnetics and Antenna

May 15, 2024 02:30 pm - 05:30 pm 1T01036 - T.E.(Electronics and Telecommunication)(SEM-VI) (Choice Base Credit Grading System) (R- 19) (C Scheme) / 89341 - Electromagnetics and Antenna QP CODE: 10054737

[Time:3 Hrs]

[Marks:80]

	riease check whether you have got the right question paper.	X+
	N.B: 1. Questions number one is compulsory.	Del
	2. Attempt any three out of remaining five questions)
	3. Assume suitable data	
	4. Figures to the right indicate the maximum marks	
	AV AV AV	100
		3
Q.1	a) Explain Laplace's and Poisson's equations	20
	b) What is the significance of Gauss's law for magnetic field	1
	c) Explain Pattern Multiplication w.r.t to linear arrays	4
	d) Explain Faraday's Law, and its relevance in EM wave Theory	
	e) Differentiate Between Antenna Efficiency and aperture efficiency	9/1
		3
Ω_{2}	a) Derive the expression for array factor. Compare End Fire Array and Broadside Array	10
Q.2	b) Derive the expression for MUF, Critical Frequency and skip Distance for flat earth	10
	surface	10
	Surface A A A A A A A A A A A A A A A A A A A	15
Q.3	a) Derive the radiation field for Dipole Antenna	10
Ų.J	b) A point charge of 20nC is located at $(4,-1,-3)$ and uniform line charge of $-25nC/m$ lies	10
<	along the intersection of plane $x=-4 \& z=6$ Calculate Electric Flux Density D (3, 1,0). In	2
20	free space	
10 N		
0.4	a) Compare EM wave propagation through lossy, perfect dielectric and conducting	10
V. -	medium with suitable expressions.	10
	b) Calculate number (N), spacing d and lengths L of the elements of a log periodic dipole	10
A	array antenna for given values Scaling Factor $T=0.822$ and Relative Spacing $a=0.149$ for	10
VX,	given frequency of 54 to 216 MHz	
Q.5	a) Derive the expression for Electric Field for two linear isotropic point sources excited	10
~	with source of equal amplitude and same phase.	
- /-	b) What is a patch Antenna? List and explain the various feeding techniques used in	10
200	microstrip antenna	
1,0	$A^{\prime\prime}$ $A^{\prime\prime}$ $A^{\prime\prime}$ $A^{\prime\prime}$ $A^{\prime\prime}$	
Q.6	Write a Short Note on any two	10
~	a) Power in EM wave and significance of Poynting Vector	10
	b) FRII's transmission formula	
2	c) Horn Antenna	
AV	d) Loop Antenna	
? 🦪		

54737