DATE: 18/12/2023
(3 Hours)
Total Marks: 80
N.B. : (1) Questions No. 1 is compulsory.
(2) Solve any three questions out of remaining
(3) Draw neat labeled diagram whenever necessary
(4) Assume suitable data if necessary

Q1 Answer any four questions
a. How do you define core, boundary and support of a fuzzy set
b. With neat diagram and necessary equations, List the different types activation functions.
c. What do you mean by K-Means algorithm? Where is it used?
d. If A and B are two fuzzy sets with membership functions: $\mu_{\mathrm{a}}(\chi)=\{0.5,0.2,0.1,0.7\}$
$\mu_{\mathrm{b}}(\chi)=\{0.8,0.3,0.4,0.1\}$, prove DE Morgan's theorem.
e. An image of size 32×32 is applied to CNN architecture. Using a kernel of size 5×5 and with a stride of 2, find out the size of output image after first CNN layer without padding. If this layer is followed with max pooling kernel of size 2×2 with stride 2 , what is the resultant image size?
a. With neat flowchart, explain the training steps and testing steps for Perceptron.
b. Briefly discuss the architecture of CNN.
b. Implement OR gate using MP Neuron.
a. Construct a discrete Hopfield network to store the patterns $[11-11],[-1-11-1]\left[\begin{array}{lll}1 & -1 & -1\end{array}-1\right]$,
[$\left.1 \begin{array}{lll}1 & 1 & 1\end{array}\right]$. Calculate the energy of the stored patterns.
b. Draw the architecture of Biological Neuron. Compare Artificial Neuron with Biological

Neuron.
a. Construct a Kohonen Self Organizing map to cluster given vectors [0 00111$],\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$ and [1
$101]$. The number of clusters to be formed is 2 . Consider the learning rate as 0.25 . The weight matrix is given by

$$
w_{i j}=\left[\begin{array}{ll}
0.1 & 0.3 \\
0.6 & 0.9 \\
0.8 & 0.7 \\
0.2 & 0.5
\end{array}\right]
$$

a. What are the different types of membership functions? Discuss with diagram. Give their practical applications in fuzzy systems.
b. Discuss the Support Vector algorithm in detail
a. What is defuzzification? What are the various methods of defuzzification?
b. Design a fuzzy controller to decide the speed of a train approaching a station.

