(3 Hours) Total Marks: 80

- **N.B.**: (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions out of the remaining five questions
- Q.1 (a) Given the matrix $A = \begin{bmatrix} 1 & 3 & 3 & 1 \\ 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ find null space of A and null space of A^t . (5)
 - (b) A Coin is tossed 4 times. Let X be number of heads obtained Find
 - (i) The probability distribution of X
 - (ii) Mean of X
 - (iii) Cumulative Distribution function of X
 - (c) The number of flu vaccinations reported by a health clinic over a 14-day period (5) is given below:

145, 162, 178, 190, 205, 220, 235, 235, 248, 260, 275, 290, 310, 425

Identify the outlier if the outlier lies more than ±2 standard deviations away from the mean.

- (d) Obtain the Hessian Matrix for the function $Z = 12x_1x_2 + 10x_1 34x_3 + 3x_1^2 + 15x_2^2 16x_3^2$ (5)
- Q.2 (a) Find Singular Value of Decomposition of matrix $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ (10)
 - (b) The average commute time for employees at a company is 35 minutes. A sample (10) of 18 employees has a mean commute time of 32 minutes and a standard deviation of 6 minutes. At the 5% significance level, test whether the average commute time has changed. (Given t_{critical}=2.110 for 17 degrees of freedom)
- Q.3 (a) A survey was conducted among 100 students to find out their favorite ice cream (10) flavors. The results are as follows:

Flavor	Number of Students
Vanilla	30
Chocolate	25
Strawberry	45 A
Mango	20
Others	3 10

Draw a **pie chart** to represent the data.

(b) Conduct a two tailed F Test on the following samples: Sample 1: Variance = 119.76, sample size = 41. Sample 2: Variance = 69.99, sample size = 21 (Given $F_{((40,20),0.025)=2.287}$, $F_{((40,20),0.975)=0.4836}$))

88131 Page 1 of 2

Q.4 (a) You are a food scientist analyzing fruits. You measure size (in cm) and (10) sweetness (scale 1–10) of fruits from two types: Mangoes (C1) and Guavas (C2).

Apply Linear Discriminant Analysis (LDA) to project the following data into 1D and derive the discriminant function.

Class C1 – Mangoes (size, sweetness):

 $C1 = \{(5,9), (6,10), (7,8), (8,9), (6,8)\}$

Class C2 – Guavas (size, sweetness):

 $C2=\{(2,4), (3,3), (4,5), (3,4), (5,3)\}$

(b) You are given the following dataset of two features (variables) for 5 students: (10)

Student	$\triangle A$	В	C	D	E
Math Score (X1)	90	80	70	60	50
Physics Score (X2)	85	70	65	60	55

Q.5 (a) Minimize the function
$$f(x_1, x_2) = 4x_1 + 6x_2 - x_1^2 - x_2^2$$
 subject to $x_1 + 2x_2 = 6$, $x_1, x_2 \ge 0$ (10)

- (b) Find the minimizer of $f(x) = (x-3)^2 + \frac{4}{x}$ using bisection method in (1,5) (10) within a range of 0.2
- Q.6 Attempt any four

(20)

- (a) Plot the graphs of the following functions over the interval $x \in [-2,2]$ (5) (a) $\sinh(x)$ (b) $\cosh(x)$
- (b) Explain the curse of dimensionality with reference to the following: (5)
 - (a) Volume of a unit hypercube as dimension increases
 - (b) Why high-dimensional data becomes sparse
 - (c) How it affects nearest-neighbour algorithms
- (c) You are given a distance matrix between five cities (based on travel time): (5)

CALL!	A	В	C	D	È
A	0	53	A 4	2	5
В	3	0 5	? 2	5 5	4
C	4 8	2,5	0,5	3	3
D	2	5	3	0	2
E	5/5	4	3	32	0

Use **classical MDS** to find a 2D embedding of the cities such that their pairwise distances are preserved as much as possible.

- (d) Write short notes on Non gradient based optimization technique. (5)
- (e) Define and differentiate between the following supervised learning models: (5)
 (a) Linear Regression (b) Logistic Regression
- (f) Find column Space of $=\begin{bmatrix} 2 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ (5)
