Paper / Subject Code: 32223 / Digital VLSI

June 7, 2024 02:30 pm - 05:30 pm 1T01035 - T.E.(Electronics and Telecommunication)(SEM-V)(Choice Base Credit Grading System) (R- 19) (C Scheme) / 32223 - Digital VLSI QP CODE: 10057639

Duration: 3hrs [Max Marks: 80]

- **N.B.:** (1) Question No 1 is Compulsory.
 - (2) Attempt any three questions out of the remaining five.
 - (3) All questions carry equal marks.
 - (4) Assume suitable data, if required and state it clearly.

1 Attempt any FOUR

[20]

- a 1-bit Full adder
- b Explain the working of floating gate transistor in Flash memory.
- For enhancement type NMOS transistor threshold voltage V_T =0.6 V_T , μ nCox =30 μ A/V2, W = 20 μ m, L = 10 μ m. Calculate I_D if for VGS = 1.8 , V_{DS} = 1.8V
- d Explain clock generation in VLSI design.
- e Draw HLSM of serial FIR filter.
- 2 a Consider a CMOS inverter with following parameters:

[10]

nMOS VTN = 0.6 V
$$\mu$$
nCox =60 μ A/V2 (W/L)n = 4 pMOS VTp = -0.7 V μ pCox =25 μ A/V2 (W/L)p = 8

Calculate the V_{IL} and V_{TH} . The power supply voltage is VDD = 3.0 V.

- b Explain nWell fabrication process with neat diagrams. [10]
- 3 a Realize D flip flop using TG logic and draw its layout. [10]
 - b Explain 3T DRAM with its read and write operation. [10]
- 4 a Realize the expression Y=XNOR using the following logic style. [10]
 - 1. CMOS logic
 - 2. Pseudo NMOS
 - 3. Dynamic Logic
 - 4. Domino Logic
 - b Implement the following

[10]

- 1. 4X4 Array multiplier
- 2. 4-bit carry skip adder
- 5 a Implement the following

[10]

- 1. 4 bit carry lookahead adder carry using CMOS logic.
- 2. 4- bit barrel shifter.

b Draw 4 *4 bit NOR based array to store the following data in respective memory [10] locations.

	Memory address	Data
1000		0101
0100	4 54	1101
0010	, &C, 45,	0010
0001	TO A	1011

- 6 a Design a 'Parallel FIR filter' using the RTL design process. Draw HLSM,FSM, [10] interface and Datapath
 - b Realize the expression Y = A+ BC +F using CMOS logic. Find equivalent CMOS [10] inverter for simultaneously switching of all input.

Assume
$$(\frac{W}{L})p = 15$$
, $(\frac{W}{L})n = 10$