13/11/2024 EXTC SEM-V C SCHEME DTSP QP CODE: 10064493

Duration: 3hrs [Max Marks: 80]

N.B.: (1) Question No 1 is Compulsory.

- (2) Attempt any three questions out of the remaining five.
- (3) All questions carry equal marks.
- (4) Assume suitable data, if required and state it clearly.
- 1 Attempt any **FOUR**

[20]

- a Given signal x (n) = $\{2, 2, 4, 1\}$ has a 4-point DFT X (k). Without performing [5] DFT or IDFT, find out sequence $x_1(n)$ which would have a 4 point DFT X (k-1)

Obtain linear phase realization of

$$H(Z) = 2 + \frac{z^{-1}}{4} + \frac{z^{-2}}{4} + 2z^{-3}$$

- c Perform 4 bit quantization using truncation of the decimal number 0.484375. [5]
- d Differentiate between FIR and IIR filter [5]
- e Explain concept of frequency warping in bilinear tranformation. [5]
- 2 a Desired response of a low pass filter is

[10]

[10]

$$H_d(e^{jw}) = e^{-j3w} \quad \frac{-3\pi}{4} \ll w \ll \frac{3\pi}{4}$$
$$= 0 \quad \frac{3\pi}{4} < w \le \pi$$

Determine $H(e^{jw})$ for M = 7 using Hamming window.

b Draw the structure of cascade and parallel realization of

$$H(z) = \frac{(1 - z^{-1})^3}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{8}z^{-1})}$$

3 a A FIR digital filter has the unit impulse response sequence h(n)={2, 2, 1}. [10]

Determine the output sequence in response to the input sequence x(n) = {3, 0, -2, 0, 2, 1, 0, -2, -1, 0} using overlap-add and overlap-save method

Paper / Subject Code: 32222 / Discrete Time Signal Processing

- b A second order IIR filter has a transfer function(z) = $\frac{1}{(1-0.3z^{-1})(1-0.35z^{-1})}$. Find [10] the effect of quantization on the location of poles of this filter and Cascade form. Use 3 bits after the decimal point.
- 4 a Given x(n) = n+1 and N = 8, Find DFT X(k) using DIF FFT. [10]
 - b For analog transfer function $H(s) = \frac{3}{(s+2)(s+3)}$, determine the H (z) using impulse invariance method and bilinear transformation. Assume T = 0.1sec.
- 5 a FIR filter have impulse responses as given below. Classify them as minimum phase or maximum phase or mixed phase. [10]
 - i) $h_1(n) = \{1, 0.707, 0.25\}$
 - ii) $h_2(n) = \{1, 1.414, 1\}$
 - iii) $h_3(n) = \{1, -5, 6\}$
 - b Obtain the analog transfer function of Butterworth low pass filter with the following specification [10]

Pass band Edge Frequency $(\Omega_p) = 250 \text{ red/sec}$

Pass band Attenuation $\leq 0.1 \text{ db}$

Stop band Edge Frequency (Ω_s) = 2000red/sec

Stop band Attenuation $\geq 60 \text{ db}$

- 6 a Explain application of DSP for Echo cancellation. [6]
 - Write a short note on speech noise reduction and two band digital crossovers. [7]
 - c Explain the concept of phase and group delay. [7]
