Paper / Subject Code: 32223 / Digital VLSI

1T01035 - T.E.(Electronics and Telecommunication)(SEM-V)(Choice Based) (R-19) (C Scheme) / 32223 - Digital VLSI QP CODE: 10030986 DATE: 29/05/2023

Duration: 3hrs [Max Marks:80]

N.B.: (1) Question No 1 is Compulsory.

- (2) Attempt any three questions out of the remaining five.
- (3) All questions carry equal marks.
- (4) Assume suitable data, if required and state it clearly.
- 1 Attempt any FOUR

[20]

- a Explain significance of clock gemneration in VLSI design.
- b For enhancement type NMOS transistor threshold voltage V_T =0.6V, VGS = 3.3 V, V_{DS} = 2, find transistor is operating in saturation or Linear region.
- c Draw and Explain the working of NAND based Flash memory.
- d Realize 2:1 mux using TG.
- e Draw layout of Inverter using lambda based design rules.
- 2 a Explain 1T DRAM with its read and write operation, also draw the layout. [10]
 - Explain nMOS fabrication process with neat and clean diagrams / [10]
- 3 a Realize the following

[10]

- 1) SR latch using CMOS 2) DFF using TG
- b Draw and explain CMOS inverter with transfer characteristic. Find the condition [10] for symmetric inverter.
- 4 a Implement 1) 8-bit carry select adder 2) 4-bit array multiplier [10]
 - b Using the RTL design process

[10]

- 1) Design Datapath of Parallel FIR filter
 - 2) Design HLSM for Soda dispenser machine

3)

- 5 a Realize the expression 1-bit full adder using the following logic style. [10]
 - 1. Pseudo NMOS
 - 2. Dynamic Logic
 - b Realize the 2 input NAND and NOR gate using CMOS logic. Find equivalent CMOS inverter for simultaneously switching of all input. Assume $(\frac{w}{L})p = 20$, $(\frac{w}{L})n = 15$
- 6 a Compare the effect of Full scaling and Constant voltage scaling on Current, Power, power density. State which is more power efficient [10]
 - Draw 4 *4 bit OR based array and NOR based array to store the following data [10]
 - b in respective memory locations.

Memory address	Data
1000	1100
0100	1001
0010	0110
0001	1011

30086

Page 1 of 1